Skip to main content

Object Classification Code Base

Project description

Language: 🇺🇸 🇨🇳

«ZCls» is a classification model benchmark code base

Supported Recognizers:

Table of Contents

Background

In order to further improve the algorithm performance, it is usually necessary to improve the existing model, which inevitably involves code refactoring. Creating this repo, on the one hand, serves as the CodeBase of the new model/optimization method, on the other hand, it also records the comparison between the custom model and the existing implementation (such as Torchvision Models)

Maintainers

  • zhujian - Initial work - zjykzj

Thanks

@misc{ding2021repvgg,
      title={RepVGG: Making VGG-style ConvNets Great Again}, 
      author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun},
      year={2021},
      eprint={2101.03697},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}

@misc{zhang2020resnest,
      title={ResNeSt: Split-Attention Networks}, 
      author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
      year={2020},
      eprint={2004.08955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{ding2019acnet,
      title={ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks}, 
      author={Xiaohan Ding and Yuchen Guo and Guiguang Ding and Jungong Han},
      year={2019},
      eprint={1908.03930},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{howard2019searching,
      title={Searching for MobileNetV3}, 
      author={Andrew Howard and Mark Sandler and Grace Chu and Liang-Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam},
      year={2019},
      eprint={1905.02244},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{cao2019gcnet,
      title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond}, 
      author={Yue Cao and Jiarui Xu and Stephen Lin and Fangyun Wei and Han Hu},
      year={2019},
      eprint={1904.11492},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For more thanks, please check THANKS

Contributing

Anyone's participation is welcome! Open an issue or submit PRs.

Small note:

License

Apache License 2.0 © 2020 zjykzj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zcls-0.2.1.tar.gz (65.7 kB view details)

Uploaded Source

Built Distribution

zcls-0.2.1-py2.py3-none-any.whl (134.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file zcls-0.2.1.tar.gz.

File metadata

  • Download URL: zcls-0.2.1.tar.gz
  • Upload date:
  • Size: 65.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.2.1.tar.gz
Algorithm Hash digest
SHA256 f8816c1a58cc635f7a14189f88ef3b3ebfa480b4e8e07e4d3402b470defef43a
MD5 0b1973f8256c9b0a1693cd0ea479f046
BLAKE2b-256 cab41fb0d034a83782694e489a232d3aa068ac7fd2a9f7d8504ade00a65c7677

See more details on using hashes here.

File details

Details for the file zcls-0.2.1-py2.py3-none-any.whl.

File metadata

  • Download URL: zcls-0.2.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 134.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 90b2a4c1dc1636bbfc0b4596576e4cc991f3e485ef16fb063c26f63ebfee8e5e
MD5 b76381f26b3d10d8e6308316b3458b2e
BLAKE2b-256 d3d83c24cb20efa95113169e0446bb6f956811d4bbdb1756ab8a087512599b99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page