Skip to main content

Object Classification Code Base

Project description

Language: 🇺🇸 🇨🇳

«ZCls» is a classification model benchmark code base

Supported Recognizers:

Refer to roadmap for details

Table of Contents

Background

In order to further improve the algorithm performance, it is usually necessary to improve the existing model, which inevitably involves code refactoring. Creating this repo, on the one hand, serves as the CodeBase of the new model/optimization method, on the other hand, it also records the comparison between the custom model and the existing implementation (such as Torchvision Models)

Maintainers

  • zhujian - Initial work - zjykzj

Thanks

@misc{ding2021repvgg,
      title={RepVGG: Making VGG-style ConvNets Great Again}, 
      author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun},
      year={2021},
      eprint={2101.03697},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}

@misc{zhang2020resnest,
      title={ResNeSt: Split-Attention Networks}, 
      author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
      year={2020},
      eprint={2004.08955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{ding2019acnet,
      title={ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks}, 
      author={Xiaohan Ding and Yuchen Guo and Guiguang Ding and Jungong Han},
      year={2019},
      eprint={1908.03930},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{howard2019searching,
      title={Searching for MobileNetV3}, 
      author={Andrew Howard and Mark Sandler and Grace Chu and Liang-Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam},
      year={2019},
      eprint={1905.02244},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{cao2019gcnet,
      title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond}, 
      author={Yue Cao and Jiarui Xu and Stephen Lin and Fangyun Wei and Han Hu},
      year={2019},
      eprint={1904.11492},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For more thanks, check THANKS

Contributing

Anyone's participation is welcome! Open an issue or submit PRs.

Small note:

License

Apache License 2.0 © 2020 zjykzj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zcls-0.3.2.tar.gz (65.8 kB view details)

Uploaded Source

Built Distribution

zcls-0.3.2-py2.py3-none-any.whl (134.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file zcls-0.3.2.tar.gz.

File metadata

  • Download URL: zcls-0.3.2.tar.gz
  • Upload date:
  • Size: 65.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.3.2.tar.gz
Algorithm Hash digest
SHA256 404946410e6756931acfb92f768a6fc1dca2ad4d9656f98c03807916017257b1
MD5 6ca5a50ed182a2417601029eded25fae
BLAKE2b-256 e8bba1328b765258a7aec13fa5573ec9b56b877a1d3cc694bc146b9647e38cfc

See more details on using hashes here.

File details

Details for the file zcls-0.3.2-py2.py3-none-any.whl.

File metadata

  • Download URL: zcls-0.3.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 134.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.3.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f4c6d8b7742868268b06733ffc34f8c0866bb12ceaa1e2e304f60c4a8aa8598b
MD5 c4f865dcf4c8b8c7d8ac09abb9b5b9d0
BLAKE2b-256 5be29d7aef296b83f232c3e4aa3d512bcf9f4ce83e1281c9543cfbe503bea0da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page