Skip to main content

Object Classification Training/Inferring Framework

Project description

Language: 🇺🇸 🇨🇳

«ZCls» is a classification model training/inferring framework

Documentation Status

Supported Recognizers:

Refer to roadmap for details

Table of Contents

Background

In the fields of object detection/object segmentation/action recognition, there have been many training frameworks with high integration and perfect process, such as facebookresearch/detectron2, open-mmlab/mmaction2 ...

Object classification is the most developed and theoretically basic field in deeplearning. Referring to the existing training framework, a training/inferring framework based on object classification model is implemented. I hope ZCls can bring you a better realization.

Installation

See INSTALL

Usage

How to train, see Get Started with ZCls

Use builtin datasets, see Use Builtin Datasets

Use custom datasets, see Use Custom Datasets

Use pretrained model, see Use Pretrained Model

Maintainers

  • zhujian - Initial work - zjykzj

Thanks

@misc{ding2021repvgg,
      title={RepVGG: Making VGG-style ConvNets Great Again}, 
      author={Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun},
      year={2021},
      eprint={2101.03697},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}

@misc{zhang2020resnest,
      title={ResNeSt: Split-Attention Networks}, 
      author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
      year={2020},
      eprint={2004.08955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{ding2019acnet,
      title={ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks}, 
      author={Xiaohan Ding and Yuchen Guo and Guiguang Ding and Jungong Han},
      year={2019},
      eprint={1908.03930},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{howard2019searching,
      title={Searching for MobileNetV3}, 
      author={Andrew Howard and Mark Sandler and Grace Chu and Liang-Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam},
      year={2019},
      eprint={1905.02244},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{cao2019gcnet,
      title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond}, 
      author={Yue Cao and Jiarui Xu and Stephen Lin and Fangyun Wei and Han Hu},
      year={2019},
      eprint={1904.11492},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For more thanks, check THANKS

Contributing

Anyone's participation is welcome! Open an issue or submit PRs.

Small note:

License

Apache License 2.0 © 2020 zjykzj

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zcls-0.5.2.tar.gz (69.6 kB view details)

Uploaded Source

Built Distribution

zcls-0.5.2-py2.py3-none-any.whl (140.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file zcls-0.5.2.tar.gz.

File metadata

  • Download URL: zcls-0.5.2.tar.gz
  • Upload date:
  • Size: 69.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.5.2.tar.gz
Algorithm Hash digest
SHA256 3480ff17eadfcd5c6027c7315224ee2f15a93e498610c136942e53971deb765b
MD5 9e8524ca34f5e16ffec5d97a39f7cce1
BLAKE2b-256 09af0c546e9e183d3d3aa270e3cccf59f5fbc4388bdad0480c7c808cb37e49e4

See more details on using hashes here.

File details

Details for the file zcls-0.5.2-py2.py3-none-any.whl.

File metadata

  • Download URL: zcls-0.5.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 140.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for zcls-0.5.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 126062b795a9c41e41c37aec6ae4a234f26c2f9ad3c3c74a8ec36a003acb09e2
MD5 266667cef39a46ea908e5cd93ed4b2fa
BLAKE2b-256 c5e58fb7f3d009257d0c08b63a3b8469de820d3dc18d10aaf4a155ca9d1207fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page