Skip to main content

Scraper for www.zeitsprung.fm, a great history podcast.

Project description

zeitsprung.fm

zeitsprung

https://img.shields.io/pypi/v/zeitsprung.svg https://github.com/munterfi/zeitsprung/workflows/build/badge.svg Documentation Status Updates https://codecov.io/gh/munterfi/zeitsprung/branch/master/graph/badge.svg

Note: zeitsprung.fm has moved to geschichte.fm, therefore this project is no longer maintained.

This package provides a scraper for www.zeitsprung.fm, a great history podcast. To get the metadata of all episodes from the website, simply start the scraper:

from zeitsprung.scraping import Scraper
s = Scraper('path/to/folder/for/database')
s.run()

The scraper then downloads the all episode metadata and audio files. The metadata is written to the ‘meta’ table in the database. The audio files are converted to ‘.wav’ files and saved separately to a folder, while a link to the file is stored in the ‘audio’ table in the database.

To access the data, create a SQLiteEngine:

from zeitsprung.database import SQLiteEngine
db = SQLiteEngine('path/to/folder/for/database/zeitsprung.db')

Query the meta data from the database:

db.query_all_meta()

And the audio file paths and meta data:

db.query_all_audio()

Now have fun with analysing the episodes of zeitsprung!

Features

  • Scraper class to download the meta data and audio files of all episodes.

  • Database class to setup and access the SQLite database containing the meta data of the episodes.

To Do

  • Processing class to conduct speech recognition on the audio files and build an index for clustering the topics.

  • Visualize up to date statistics.

References

History

0.1.1 (2021-10-02)

  • Adjust URLs to GitHub account due to renaming @munterfinger to @munterfi.

  • Note: zeitsprung.fm has moved to geschichte.fm, therefore this project no longer is maintained.

0.1.0 (2020-09-22)

  • First release on PyPI.

  • Scraper class to download the meta data and audio files of all episodes.

  • Database class to setup and access the SQLite database containing the meta data of the episodes.

  • Documentation using readthedocs: https://zeitsprung.readthedocs.io/en/latest/

  • Github action for building and testing the package.

  • Coverage tests using codecov.io.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zeitsprung-0.1.1.tar.gz (57.2 kB view details)

Uploaded Source

Built Distribution

zeitsprung-0.1.1-py2.py3-none-any.whl (8.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file zeitsprung-0.1.1.tar.gz.

File metadata

  • Download URL: zeitsprung-0.1.1.tar.gz
  • Upload date:
  • Size: 57.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for zeitsprung-0.1.1.tar.gz
Algorithm Hash digest
SHA256 bd2394e342241a9fbf75c812dd2216e5b173a22be57264c7bf8063a415120fad
MD5 35f200f2ecef0831fb51580c61540875
BLAKE2b-256 373b12acff2ac4ba8cae7b487c66ab24150b008c249902e0c57fede1ff81186e

See more details on using hashes here.

File details

Details for the file zeitsprung-0.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: zeitsprung-0.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for zeitsprung-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b47c5b43cfd4f690339796f66db918839bd24658483ee604bef8a75eda0c3adc
MD5 1c6c8c53c5e657e6d6f1666a0b90e5bf
BLAKE2b-256 558dedff6dfb9f3be667cb1e97b471980feef52ea434001d394aab176d920331

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page