Skip to main content

Attribution of Neural Networks using PyTorch

Project description

Zennit

Zennit-Logo

Documentation Status tests PyPI Version License

Zennit (Zennit explains neural networks in torch) is a high-level framework in Python using Pytorch for explaining/exploring neural networks. Its design philosophy is intended to provide high customizability and integration as a standardized solution for applying rule-based attribution methods in research, with a strong focus on Layerwise Relevance Propagation (LRP). Zennit strictly requires models to use Pytorch's torch.nn.Module structure (including activation functions).

Zennit is currently under active development, but should be mostly stable.

If you find Zennit useful for your research, please consider citing our related paper:

@article{anders2021software,
      author  = {Anders, Christopher J. and
                 Neumann, David and
                 Samek, Wojciech and
                 Müller, Klaus-Robert and
                 Lapuschkin, Sebastian},
      title   = {Software for Dataset-wide XAI: From Local Explanations to Global Insights with {Zennit}, {CoRelAy}, and {ViRelAy}},
      journal = {CoRR},
      volume  = {abs/2106.13200},
      year    = {2021},
}

Documentation

The latest documentation is hosted at zennit.readthedocs.io.

Install

To install directly from PyPI using pip, use:

$ pip install zennit

Alternatively, install from a manually cloned repository to try out the examples:

$ git clone https://github.com/chr5tphr/zennit.git
$ pip install ./zennit

Usage

At its heart, Zennit registers hooks at Pytorch's Module level, to modify the backward pass to produce rule-based attributions like LRP (instead of the usual gradient). All rules are implemented as hooks (zennit/rules.py) and most use the LRP basis BasicHook (zennit/core.py).

Composites (zennit/composites.py) are a way of choosing the right hook for the right layer. In addition to the abstract NameMapComposite, which assigns hooks to layers by name, and LayerMapComposite, which assigns hooks to layers based on their Type, there exist explicit Composites, some of which are EpsilonGammaBox (ZBox in input, Epsilon in dense, Gamma in convolutions) or EpsilonPlus (Epsilon in dense, ZPlus in convolutions). All composites may be used by directly importing from zennit.composites, or by using their snake-case name as key for zennit.composites.COMPOSITES.

Canonizers (zennit/canonizers.py) temporarily transform models into a canonical form, if required, like SequentialMergeBatchNorm, which automatically detects and merges BatchNorm layers followed by linear layers in sequential networks, or AttributeCanonizer, which temporarily overwrites attributes of applicable modules, e.g. to handle the residual connection in ResNet-Bottleneck modules.

Attributors (zennit/attribution.py) directly execute the necessary steps to apply certain attribution methods, like the simple Gradient, SmoothGrad or Occlusion. An optional Composite may be passed, which will be applied during the Attributor's execution to compute the modified gradient, or hybrid methods.

Using all of these components, an LRP-type attribution for VGG16 with batch-norm layers with respect to label 0 may be computed using:

import torch
from torchvision.models import vgg16_bn

from zennit.composites import EpsilonGammaBox
from zennit.canonizers import SequentialMergeBatchNorm
from zennit.attribution import Gradient


data = torch.randn(1, 3, 224, 224)
model = vgg16_bn()

canonizers = [SequentialMergeBatchNorm()]
composite = EpsilonGammaBox(low=-3., high=3., canonizers=canonizers)

with Gradient(model=model, composite=composite) as attributor:
    out, relevance = attributor(data, torch.eye(1000)[[0]])

A similar setup using the example script produces the following attribution heatmaps: beacon heatmaps

For more details and examples, have a look at our documentation.

More Example Heatmaps

More heatmaps of various attribution methods for VGG16 and ResNet50, all generated using share/example/feed_forward.py, can be found below.

Heatmaps for VGG16

vgg16 heatmaps

Heatmaps for ResNet50

resnet50 heatmaps

Contributing

See CONTRIBUTING.md for detailed instructions on how to contribute.

License

Zennit is licensed under the GNU LESSER GENERAL PUBLIC LICENSE VERSION 3 OR LATER -- see the LICENSE, COPYING and COPYING.LESSER files for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zennit-0.5.1.tar.gz (1.4 MB view details)

Uploaded Source

Built Distribution

zennit-0.5.1-py3-none-any.whl (54.6 kB view details)

Uploaded Python 3

File details

Details for the file zennit-0.5.1.tar.gz.

File metadata

  • Download URL: zennit-0.5.1.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for zennit-0.5.1.tar.gz
Algorithm Hash digest
SHA256 ce4889ad8c09fee87d5eca426ea5607ef27f43340a7d2963559d559f5f4d3fd3
MD5 23a556523064216bb7f3ddee411a30fe
BLAKE2b-256 f642721a50dd95a7419e6e02eb60f012fc27ac91da0347efbe7555f5e4ab8e4a

See more details on using hashes here.

File details

Details for the file zennit-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: zennit-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 54.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for zennit-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a49be81f34ccb851633fea08a07bba2d04e73b00c25ffe54ac0ec822d0a3b096
MD5 d60a104ec875776170fd707de73e2aca
BLAKE2b-256 1e85878cf390bdc993c6977bc7ae6ce31642e3383984729ec60fcff38230a4a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page