Skip to main content

Attribution of Neural Networks using PyTorch

Project description

Zennit

Zennit-Logo

Documentation Status tests PyPI Version License

Zennit (Zennit explains neural networks in torch) is a high-level framework in Python using Pytorch for explaining/exploring neural networks. Its design philosophy is intended to provide high customizability and integration as a standardized solution for applying rule-based attribution methods in research, with a strong focus on Layerwise Relevance Propagation (LRP). Zennit strictly requires models to use Pytorch's torch.nn.Module structure (including activation functions).

Zennit is currently under active development, but should be mostly stable.

If you find Zennit useful for your research, please consider citing our related paper:

@article{anders2021software,
      author  = {Anders, Christopher J. and
                 Neumann, David and
                 Samek, Wojciech and
                 Müller, Klaus-Robert and
                 Lapuschkin, Sebastian},
      title   = {Software for Dataset-wide XAI: From Local Explanations to Global Insights with {Zennit}, {CoRelAy}, and {ViRelAy}},
      journal = {CoRR},
      volume  = {abs/2106.13200},
      year    = {2021},
}

Documentation

The latest documentation is hosted at zennit.readthedocs.io.

Install

To install directly from PyPI using pip, use:

$ pip install zennit

Alternatively, install from a manually cloned repository to try out the examples:

$ git clone https://github.com/chr5tphr/zennit.git
$ pip install ./zennit

Usage

At its heart, Zennit registers hooks at Pytorch's Module level, to modify the backward pass to produce rule-based attributions like LRP (instead of the usual gradient). All rules are implemented as hooks (zennit/rules.py) and most use the LRP basis BasicHook (zennit/core.py).

Composites (zennit/composites.py) are a way of choosing the right hook for the right layer. In addition to the abstract NameMapComposite, which assigns hooks to layers by name, and LayerMapComposite, which assigns hooks to layers based on their Type, there exist explicit Composites, some of which are EpsilonGammaBox (ZBox in input, Epsilon in dense, Gamma in convolutions) or EpsilonPlus (Epsilon in dense, ZPlus in convolutions). All composites may be used by directly importing from zennit.composites, or by using their snake-case name as key for zennit.composites.COMPOSITES.

Canonizers (zennit/canonizers.py) temporarily transform models into a canonical form, if required, like SequentialMergeBatchNorm, which automatically detects and merges BatchNorm layers followed by linear layers in sequential networks, or AttributeCanonizer, which temporarily overwrites attributes of applicable modules, e.g. to handle the residual connection in ResNet-Bottleneck modules.

Attributors (zennit/attribution.py) directly execute the necessary steps to apply certain attribution methods, like the simple Gradient, SmoothGrad or Occlusion. An optional Composite may be passed, which will be applied during the Attributor's execution to compute the modified gradient, or hybrid methods.

Using all of these components, an LRP-type attribution for VGG16 with batch-norm layers with respect to label 0 may be computed using:

import torch
from torchvision.models import vgg16_bn

from zennit.composites import EpsilonGammaBox
from zennit.canonizers import SequentialMergeBatchNorm
from zennit.attribution import Gradient


data = torch.randn(1, 3, 224, 224)
model = vgg16_bn()

canonizers = [SequentialMergeBatchNorm()]
composite = EpsilonGammaBox(low=-3., high=3., canonizers=canonizers)

with Gradient(model=model, composite=composite) as attributor:
    out, relevance = attributor(data, torch.eye(1000)[[0]])

A similar setup using the example script produces the following attribution heatmaps: beacon heatmaps

For more details and examples, have a look at our documentation.

More Example Heatmaps

More heatmaps of various attribution methods for VGG16 and ResNet50, all generated using share/example/feed_forward.py, can be found below.

Heatmaps for VGG16

vgg16 heatmaps

Heatmaps for ResNet50

resnet50 heatmaps

Contributing

See CONTRIBUTING.md for detailed instructions on how to contribute.

License

Zennit is licensed under the GNU LESSER GENERAL PUBLIC LICENSE VERSION 3 OR LATER -- see the LICENSE, COPYING and COPYING.LESSER files for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zennit-0.5.0.tar.gz (1.4 MB view details)

Uploaded Source

Built Distribution

zennit-0.5.0-py3-none-any.whl (53.6 kB view details)

Uploaded Python 3

File details

Details for the file zennit-0.5.0.tar.gz.

File metadata

  • Download URL: zennit-0.5.0.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for zennit-0.5.0.tar.gz
Algorithm Hash digest
SHA256 640647500099d2d18ee4157ff96cd924ef34dff97e1a39afda987e482a95c087
MD5 056f182f6c8ba33dd1d15bafb1e24c67
BLAKE2b-256 052ce7f6b73d0fb9687053d8a406ccc7387cc0d0dc03e872e4fe5c7b0516771b

See more details on using hashes here.

File details

Details for the file zennit-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: zennit-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 53.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.9

File hashes

Hashes for zennit-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5cee1e6ba95a574bc2ef3c6876802b390290f1d37a2fff6a748ad317e531a2b2
MD5 3e856359515621a88f468c7491f65907
BLAKE2b-256 8b145172eebda07dd90626b41a4396368aa51e00c432cd144e892eb1c3b3bdd7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page