Skip to main content

This package handles downloading, cleaning, analyzing street view imagery in a one-stop and zen manner.

Project description

PyPi version Python versions License Downloads Downloads Downloads Documentation Status

ZenSVI

This package is a one-stop solution for downloading, cleaning, analyzing street view imagery. Detailed documentation can be found here.

Installation of zensvi

$ pip install zensvi

Installation of pytorch and torchvision

Since zensvi uses pytorch and torchvision, you may need to install them separately. Please refer to the official website for installation instructions.

Usage

Downloading Street View Imagery

Mapillary

For downloading images from Mapillary, utilize the MLYDownloader. Ensure you have a Mapillary client ID:

from zensvi.download import MLYDownloader

mly_api_key = "YOUR_OWN_MLY_API_KEY"  # Please register your own Mapillary API key
downloader = MLYDownloader(mly_api_key=mly_api_key)
# with lat and lon:
downloader.download_svi("path/to/output_directory", lat=1.290270, lon=103.851959)
# with a csv file with lat and lon:
downloader.download_svi("path/to/output_directory", input_csv_file="path/to/csv_file.csv")
# with a shapefile:
downloader.download_svi("path/to/output_directory", input_shp_file="path/to/shapefile.shp")
# with a place name that works on OpenStreetMap:
downloader.download_svi("path/to/output_directory", input_place_name="Singapore")

Running Segmentation

To perform image segmentation, use the Segmenter:

from zensvi.cv import Segmenter

segmenter = Segmenter(dataset="cityscapes", # or "mapillary"
                      task="semantic" # or "panoptic"
                      )
segmenter.segment("path/to/input_directory", 
                  dir_image_output = "path/to/image_output_directory",
                  dir_summary_output = "path/to/segmentation_summary_output"
                  )

Running Places365

To perform scene classification, use the ClassifierPlaces365:

# initialize the classifier
classifier = ClassifierPlaces365(
    device="cpu",  # device to use (either "cpu" or "gpu")
)

# set arguments
classifier = ClassifierPlaces365()
classifier.classify(
    "path/to/input_directory",
    dir_image_output="path/to/image_output_directory",
    dir_summary_output="path/to/classification_summary_output"
)

Running Low-Level Feature Extraction

To extract low-level features, use the get_low_level_features:

from zensvi.cv import get_low_level_features

get_low_level_features(
    "path/to/input_directory",
    dir_image_output="path/to/image_output_directory",
    dir_summary_output="path/to/low_level_feature_summary_output"
)

Transforming Images

Transform images from panoramic to perspective or fisheye views using the ImageTransformer:

from zensvi.transform import ImageTransformer

dir_input = "path/to/input"
dir_output = "path/to/output"
image_transformer = ImageTransformer(
    dir_input="path/to/input", 
    dir_output="path/to/output"
)
image_transformer.transform_images(
    style_list="perspective equidistant_fisheye orthographic_fisheye stereographic_fisheye equisolid_fisheye",  # list of projection styles in the form of a string separated by a space
    FOV=90,  # field of view
    theta=120,  # angle of view (horizontal)
    phi=0,  # angle of view (vertical)
    aspects=(9, 16),  # aspect ratio
    show_size=100,  # size of the image to show (i.e. scale factor)
)

Visualizing Results

To visualize the results, use the plot_map and plot_image functions:

from zensvi.visualization import plot_map, plot_image

# Plotting a map
plot_map(
    "path/to/pid_file.csv",  # path to the file containing latitudes and longitudes
    variable_name="vegetation", 
    plot_type="point"  # this can be either "point", "line", or "hexagon"
)

# Plotting images in a grid
plot_image(
    "path/to/image_directory", 
    4,  # number of rows
    5  # number of columns
)

Contributing

Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.

License

zensvi was created by Koichi Ito. It is licensed under the terms of the CC BY-SA 4.0.

Please cite the following paper if you use zensvi in a scientific publication: (place holder for the paper citation)

@article{ito2024zensvi,
  title={ZenSVI: One-Stop Python Package for Integrated Analysis of Street View Imagery},
  author={Ito, Koichi, XXX, XXX, XXX, ...},
  journal={XXX},
  volume={XXX},
  pages={XXX},
  year={2024}
}

Credits

zensvi was created with cookiecutter and the py-pkgs-cookiecutter template.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zensvi-0.10.4.tar.gz (42.9 MB view details)

Uploaded Source

Built Distribution

zensvi-0.10.4-py3-none-any.whl (42.9 MB view details)

Uploaded Python 3

File details

Details for the file zensvi-0.10.4.tar.gz.

File metadata

  • Download URL: zensvi-0.10.4.tar.gz
  • Upload date:
  • Size: 42.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.7 Darwin/23.4.0

File hashes

Hashes for zensvi-0.10.4.tar.gz
Algorithm Hash digest
SHA256 317484c6e9efdf91e47c065ee8352cdef56733bcd374383ee2f3e2dd9e5db684
MD5 03b8c58d81d0560e06e9eeb1078cfe76
BLAKE2b-256 9c1c9d4e5a5b04660cfdecba33cdcd47584587c35ec848c5a22f576059f2f2d0

See more details on using hashes here.

File details

Details for the file zensvi-0.10.4-py3-none-any.whl.

File metadata

  • Download URL: zensvi-0.10.4-py3-none-any.whl
  • Upload date:
  • Size: 42.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.7 Darwin/23.4.0

File hashes

Hashes for zensvi-0.10.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a891383c9beb3bfa728aa5406384507422d12850f79608d66f063174e50f0dec
MD5 0e31e8f466f5fd30c00a6c174d13aa07
BLAKE2b-256 f682062eadd694dec7a1a1f2f873a5e6e80e200c02fcb7313f61714562ff9732

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page