Skip to main content

Zephyr is a command-line utility that provides project and component scaffolding to build modular pipelines

Project description

Zephyr

Zephyr is a command-line utility that provides project and component scaffolding to build modular pipelines.

What is Zephyr

Zephyr allows you to quickly bootstrap boilerplate code at the project and module level by leveraging
cookiecutter. Zephyr also provides a way to bootstrap modular pipelines by converting a list of modules into a Metaflow pipeline.

Using Zephyr

Getting up and running with Zephyr is easy

Installing Zephyr

Install zephyr from pypi

pip install zephyr_bootstrap 

Bootstrap project

To start simply use zephyr init

zephyr init

Follow the prompts to create a sample project

2021-05-25 21:38:16,467 | INFO : initializing project... 
app_name [my_project]: 
desc [My project Description]: 
Project my_project created

The project comes ready with a loaded Makefile, example notebook, and everything to build a library package.

ls my_project/
data  docker-compose.yml  docs  Makefile  my_project  notebooks  pipelines  README.md  requirements.txt  setup.py  tests  VERSION

Custom template

You can also use custom cookiecutters to bootstrap a project

zephyr init --custom https://github.com/drivendata/cookiecutter-data-science

Create Module

Once a project is created, you can create a new module using...

zephyr module create

Follow the prompts to bootstap a module

2021-05-25 21:40:44,452 | INFO : Creating module...
module_name [my_module]: 
desc [My module description]: 
project_name [my_project]: 
Module my_module created

The module comes ready with a buildable docker image, example script, and sample proccesing code.

ls my_project/modules/my_module/
build_docker.sh  controller.py  Dockerfile  example.py  __init__.py  linux_packages.txt  README.md  requirements.txt  sample_inputs  sample_outputs  tests

Custom template

You can also use custom cookiecutters to bootstrap a module

zephyr module create --custom https://github.com/audreyfeldroy/cookiecutter-pypackage

Delete module

Can remove a module using...

zephyr module delete

Follow promopts to remove module

Current modules: ['my_module']
Type module to delete: my_module
Do you want to delete my_module [y/N]: y
2021-05-25 21:43:27,450 | INFO : Deleting module...my_module
Module my_module deleted

Pipeline

Can create a modular pipeline using

zephyr pipeline create

Select what modules you want, by following the prompts

2021-05-25 21:53:59,024 | INFO : Creating pipeline...
Current modules: ['my_module', 'test_mod', 'mod_1', 'mod_2']
Enter comma sepearted modules for pipeline: mod_1,mod_2,my_module
Do you want to continue? with these modules: ['mod_1', 'mod_2', 'my_module'] [Y/n]: 
pipeline_name [my_pipeline]: 
Pipeline created
Test with...
python pipelines/my_pipeline/my_pipeline_pipeline.py run

The bootstrapped pipeline is ready to run.

Metaflow 2.2.8 executing My_pipelineFlow for user:banjtheman
Validating your flow...
    The graph looks good!
Running pylint...
    Pylint is happy!
2021-05-25 21:54:27.950 Workflow starting (run-id 1621994067931797):
2021-05-25 21:54:27.955 [1621994067931797/start/1 (pid 29700)] Task is starting.
2021-05-25 21:54:28.779 [1621994067931797/start/1 (pid 29700)] 2021-05-25 21:54:28,779 |INFO: Start step
2021-05-25 21:54:28.864 [1621994067931797/start/1 (pid 29700)] Task finished successfully.
2021-05-25 21:54:28.868 [1621994067931797/mod_1_step/2 (pid 29708)] Task is starting.
2021-05-25 21:54:29.519 [1621994067931797/mod_1_step/2 (pid 29708)] 2021-05-25 21:54:29,519 |INFO: Starting module mod_1
2021-05-25 21:54:29.604 [1621994067931797/mod_1_step/2 (pid 29708)] Task finished successfully.
2021-05-25 21:54:29.609 [1621994067931797/mod_2_step/3 (pid 29716)] Task is starting.
2021-05-25 21:54:30.335 [1621994067931797/mod_2_step/3 (pid 29716)] 2021-05-25 21:54:30,334 |INFO: Starting module mod_2
2021-05-25 21:54:30.427 [1621994067931797/mod_2_step/3 (pid 29716)] Task finished successfully.
2021-05-25 21:54:30.432 [1621994067931797/my_module_step/4 (pid 29724)] Task is starting.
2021-05-25 21:54:31.081 [1621994067931797/my_module_step/4 (pid 29724)] 2021-05-25 21:54:31,081 |INFO: Starting module my_module
2021-05-25 21:54:31.178 [1621994067931797/my_module_step/4 (pid 29724)] Task finished successfully.
2021-05-25 21:54:31.183 [1621994067931797/end/5 (pid 29732)] Task is starting.
2021-05-25 21:54:31.863 [1621994067931797/end/5 (pid 29732)] 2021-05-25 21:54:31,862 |INFO: Job's done
2021-05-25 21:54:31.953 [1621994067931797/end/5 (pid 29732)] Task finished successfully.
2021-05-25 21:54:31.953 Done!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zephyr_bootstrap-0.0.1.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

zephyr_bootstrap-0.0.1-py3-none-any.whl (16.0 kB view details)

Uploaded Python 3

File details

Details for the file zephyr_bootstrap-0.0.1.tar.gz.

File metadata

  • Download URL: zephyr_bootstrap-0.0.1.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.6

File hashes

Hashes for zephyr_bootstrap-0.0.1.tar.gz
Algorithm Hash digest
SHA256 f1230d03f7f65ddf25ce83599b333c0d47d8e839e66c31f001cc73725c212d0e
MD5 30adb5673327566551c309138b3164bc
BLAKE2b-256 9d31d200164c460377117f4614dcc30bde573753f72275ba283999096092da3b

See more details on using hashes here.

File details

Details for the file zephyr_bootstrap-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: zephyr_bootstrap-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 16.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.6

File hashes

Hashes for zephyr_bootstrap-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4d9d9f5f42ca4d19fec72fffda478c08374584337d9f8d85c602178dc3aed8ca
MD5 08e909c5c2f7844a95fe43829a1597e8
BLAKE2b-256 778b212ebd55f5f1270bfa632e65393dca30470f8aea4a53d5c54a3e5ad1627f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page