Skip to main content

zeus: Lightning Fast MCMC

Project description

logo

zeus is a pure-Python implementation of the Ensemble Slice Sampling method.

  • Fast & Robust Bayesian Inference,
  • Efficient Markov Chain Monte Carlo,
  • No hand-tuning,
  • Excellent performance in terms of autocorrelation time and convergence rate,
  • Scale to multiple CPUs without any extra effort,
  • Included Convergence Diagnostics.

GitHub arXiv Build Status License: GPL v3 Documentation Status

Example

For instance, if you wanted to draw samples from a 10-dimensional Gaussian, you would do something like:

import numpy as np
import zeus

def log_prob(x, ivar):
    return - 0.5 * np.sum(ivar * x**2.0)

nsteps, nwalkers, ndim = 1000, 100, 10
ivar = 1.0 / np.random.rand(ndim)
start = np.random.randn(nwalkers,ndim)

sampler = zeus.sampler(nwalkers, ndim, log_prob, args=[ivar])
sampler.run_mcmc(start, nsteps)

Documentation

Read the docs at zeus-mcmc.readthedocs.io

Installation

To install zeus using pip run

pip install zeus-mcmc

Attribution

Please cite Karamanis & Beutler (2020) if you find this code useful in your research. The BibTeX entry for the paper is:

@article{zeus,
      title={Ensemble Slice Sampling},
      author={Minas Karamanis and Florian Beutler},
      year={2020},
      eprint={2002.06212},
      archivePrefix={arXiv},
      primaryClass={stat.ML}
}

Licence

Copyright 2019-2020 Minas Karamanis and contributors.

zeus is free software made available under the GPL-3.0 License. For details see the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zeus-mcmc-1.2.1.tar.gz (13.6 kB view details)

Uploaded Source

Built Distribution

zeus_mcmc-1.2.1-py3-none-any.whl (26.5 kB view details)

Uploaded Python 3

File details

Details for the file zeus-mcmc-1.2.1.tar.gz.

File metadata

  • Download URL: zeus-mcmc-1.2.1.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.6

File hashes

Hashes for zeus-mcmc-1.2.1.tar.gz
Algorithm Hash digest
SHA256 0449613776e2b944b21db9990ab34e49f8542b33c238aa79f5367a7dfb12ddea
MD5 85f9acc35acb03f034757a31668ba846
BLAKE2b-256 0d2a02d377a6a7d5aba2b5fbf8673947a7a0901c36ebd7344f2439287e633299

See more details on using hashes here.

File details

Details for the file zeus_mcmc-1.2.1-py3-none-any.whl.

File metadata

  • Download URL: zeus_mcmc-1.2.1-py3-none-any.whl
  • Upload date:
  • Size: 26.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.6

File hashes

Hashes for zeus_mcmc-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3861b3ba460680d4f7a314faf1e36da9aeb6caf8db83d84d724b0267f8e0070e
MD5 e3ddfc41ba8a34cbd148120e07e3d5b2
BLAKE2b-256 2b4d8ef87ec9319d0db5c10d8cdb97f88e5d70ad22ad9cc712ae4da6e6edbbb5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page