Skip to main content

zeus: Lightning Fast MCMC

Project description

logo

zeus is a Python implementation of the Ensemble Slice Sampling method.

  • Fast & Robust Bayesian Inference,
  • Efficient Markov Chain Monte Carlo (MCMC),
  • Black-box inference, no hand-tuning,
  • Excellent performance in terms of autocorrelation time and convergence rate,
  • Scale to multiple CPUs without any extra effort.

GitHub arXiv Build Status License: GPL v3 Documentation Status

Example

For instance, if you wanted to draw samples from a 10-dimensional Gaussian, you would do something like:

import zeus
import numpy as np

def log_prob(x, ivar):
    return - 0.5 * np.sum(ivar * x**2.0)

nsteps, nwalkers, ndim = 1000, 100, 10
ivar = 1.0 / np.random.rand(ndim)
start = np.random.randn(nwalkers,ndim)

sampler = zeus.EnsembleSampler(nwalkers, ndim, log_prob, args=[ivar])
sampler.run_mcmc(start, nsteps)

Documentation

Read the docs at zeus-mcmc.readthedocs.io

Installation

To install zeus using pip run:

pip install zeus-mcmc

Attribution

Please cite the following papers if you found this code useful in your research:

@article{zeus,
        title={zeus: A Python Implementation of the Ensemble Slice Sampling method},
        author={Minas Karamanis and Florian Beutler},
        year={2020},
        note={in prep}
    }

@article{ess,
      title={Ensemble Slice Sampling},
      author={Minas Karamanis and Florian Beutler},
      year={2020},
      eprint={2002.06212},
      archivePrefix={arXiv},
      primaryClass={stat.ML}
}

Licence

Copyright 2019-2020 Minas Karamanis and contributors.

zeus is free software made available under the GPL-3.0 License. For details see the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zeus-mcmc-2.1.0.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

zeus_mcmc-2.1.0-py3-none-any.whl (31.5 kB view details)

Uploaded Python 3

File details

Details for the file zeus-mcmc-2.1.0.tar.gz.

File metadata

  • Download URL: zeus-mcmc-2.1.0.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.6

File hashes

Hashes for zeus-mcmc-2.1.0.tar.gz
Algorithm Hash digest
SHA256 44516b2bc9eae8fa5cfb1fa814bf722d220b970f7e77f1fda44884661ab28ed6
MD5 93a1b4befa73aa4745aaff7fb69de07b
BLAKE2b-256 113625e8ace0019dbcbafab1893ddf13185044066809f9226fa01ac650667061

See more details on using hashes here.

File details

Details for the file zeus_mcmc-2.1.0-py3-none-any.whl.

File metadata

  • Download URL: zeus_mcmc-2.1.0-py3-none-any.whl
  • Upload date:
  • Size: 31.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.6

File hashes

Hashes for zeus_mcmc-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0e892dee0631dd6b8874ee5b6f8dd56ee0fdef6d06cf78490f42bf086944f23c
MD5 f61dffa1d5b7e1b722179d9f66e45f6d
BLAKE2b-256 c36be821285fd7492ff4a048fd7cdcb9c67b4808b70004433dd77dd769bffd51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page