Skip to main content

zeus: Lightning Fast MCMC

Project description

logo

zeus is a Python implementation of the Ensemble Slice Sampling method.

  • Fast & Robust Bayesian Inference,
  • Efficient Markov Chain Monte Carlo (MCMC),
  • Black-box inference, no hand-tuning,
  • Excellent performance in terms of autocorrelation time and convergence rate,
  • Scale to multiple CPUs without any extra effort.

GitHub arXiv Build Status License: GPL v3 Documentation Status

Example

For instance, if you wanted to draw samples from a 10-dimensional Gaussian, you would do something like:

import zeus
import numpy as np

def log_prob(x, ivar):
    return - 0.5 * np.sum(ivar * x**2.0)

nsteps, nwalkers, ndim = 1000, 100, 10
ivar = 1.0 / np.random.rand(ndim)
start = np.random.randn(nwalkers,ndim)

sampler = zeus.EnsembleSampler(nwalkers, ndim, log_prob, args=[ivar])
sampler.run_mcmc(start, nsteps)

Documentation

Read the docs at zeus-mcmc.readthedocs.io

Installation

To install zeus using pip run:

pip install zeus-mcmc

Attribution

Please cite the following papers if you found this code useful in your research:

@article{zeus,
        title={zeus: A Python Implementation of the Ensemble Slice Sampling method},
        author={Minas Karamanis and Florian Beutler},
        year={2020},
        note={in prep}
    }

@article{ess,
      title={Ensemble Slice Sampling},
      author={Minas Karamanis and Florian Beutler},
      year={2020},
      eprint={2002.06212},
      archivePrefix={arXiv},
      primaryClass={stat.ML}
}

Licence

Copyright 2019-2020 Minas Karamanis and contributors.

zeus is free software made available under the GPL-3.0 License. For details see the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zeus-mcmc-2.1.1.tar.gz (18.3 kB view details)

Uploaded Source

Built Distribution

zeus_mcmc-2.1.1-py3-none-any.whl (31.6 kB view details)

Uploaded Python 3

File details

Details for the file zeus-mcmc-2.1.1.tar.gz.

File metadata

  • Download URL: zeus-mcmc-2.1.1.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.6

File hashes

Hashes for zeus-mcmc-2.1.1.tar.gz
Algorithm Hash digest
SHA256 ff4a46b24fe0dff7b715fa887616a958612f49914e5d2905c0111221a6d5bbe3
MD5 9c033df6be7616468da606e5a777fdec
BLAKE2b-256 858842334a07548a9b3117d37ce24062d0a203329c96eb0eae02cbcca01b9e1d

See more details on using hashes here.

File details

Details for the file zeus_mcmc-2.1.1-py3-none-any.whl.

File metadata

  • Download URL: zeus_mcmc-2.1.1-py3-none-any.whl
  • Upload date:
  • Size: 31.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.6

File hashes

Hashes for zeus_mcmc-2.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7b13a9fd49b7208eb62c7ecf141b9d07a8553d230a35169d7c0021cfbd611862
MD5 3972f651901ddabc88d983f5dfaf55bf
BLAKE2b-256 b620405d9652e74087ed37be24f2c07d571e5aee9c19fad1ef9487d12bb10bff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page