Electrical model fitting to impedance data
Project description
Introduction
This Python module is for fitting electrical models to measured impedance data. It also includes a command-line program to assist with automated fitting.
Installation
The easiest way is using the command line command:
$ pip install .
zfit
Here's an example of how model fitting can be performed using a Python script:
from zfitpy import zfit
net = "(CPE('K', 'alpha') | R('R2')) + R('R1')"
ranges = {'R1': (1e-3, 1e3), 'K': (1e-3, 1e3), 'alpha': (-1, 1), 'R2': (100, 1e4)}
data, fitmodel = zfit('E4990A-example1.csv', net, ranges, Ns=10)
print(fitmodel)
print(fitmodel.error)
The error between the measured data and best-fit model can be plotted using:
from zfitpy import Plotter
plotter.Z_error(data, fitmodel)
zfitpy
zfitpy is a command-line Python program. It is designed for fitting electrical models to impedance data. For example:
$ zfitpy --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --ranges="{'R1':(0,5e3),'L1':(1e-3,20e-3),'R2':(0,0.1),'L2':(1e-3,20e-3)}" --input demo/E4990A-example1.csv --plot-error
The network is specified using Lcapy notation for networks. This example uses a network comprised of a parallel combination of RL series networks. The network can be drawn using:
$ zfitpy --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --draw
The network in this example has four parameters: R1
, L1
, R2
, and
L2
. A brute force search is performed for each component using the
specified ranges; this is refined with a finishing search. The ranges
are specified as a Python dictionary, keyed by component name, with
the range for each component specified as a tuple. The number of
steps in each range is 20 can be altered with the --steps
option.
The impedance of the data and model can be plotted using:
$ zfitpy --plot-fit --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --ranges="{'R1':(0,5e3),'L1':(1e-3,20e-3),'R2':(0,0.1),'L2':(1e-3,20e-3)}" --input demo/E4990A-example1.csv
The impedance error between the data and model can be plotted using:
$ zfitpy --plot-error --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --ranges="{'R1':(0,5e3),'L1':(1e-3,20e-3),'R2':(0,0.1),'L2':(1e-3,20e-3)}" --input demo/E4990A-example1.csv
Here's another network using a constant phase element (CPE).
$ zfitpy --net "(CPE('K', 'alpha') | R('R2')) + R('R1')" --draw
$ zfitpy --plot-error --net "(CPE('K', 'alpha') | R('R2')) + R('R1')" --ranges="{'R1':(0,1e3),'K':(1e-3,1e3),'alpha':(-1,1),'R2':(1e2,1e4)}" --input demo/E4990A-example1.csv
The data format for the plots depends on the extension. matplotlib is used for the plotting and so the pdf, png, pgf, and jpg formats are all supported. For example:
$ zfitpy --net "CPE('K', 'alpha')" --draw --output CPE.png
The data can be plotted without fitting if the ranges
option is not specified. For example:
$ zfitpy --plot-data --input demo/E4990A-example1.csv
A Nyquist plot is generated if the --nyquist
option is specified. Magnitude and phase is plotted is the --magphase
option is specified. The plot style can be altered using the --style
option to specify a Matplotlib style file.
Other command line options for zfitpy can be found with the --help option.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file zfitpy-0.2.tar.gz
.
File metadata
- Download URL: zfitpy-0.2.tar.gz
- Upload date:
- Size: 8.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ff2feaeac6902febb6da883c82363db7b60b9fd7ee69a501f8531264cf3f8ae |
|
MD5 | b1715c1e2d2ccc42b0f75ab1ba102a18 |
|
BLAKE2b-256 | 4c399cbf6cba5ed34cf2d00c9396884f33407d4c4620facc0050861ec4a8951b |
File details
Details for the file zfitpy-0.2-py3-none-any.whl
.
File metadata
- Download URL: zfitpy-0.2-py3-none-any.whl
- Upload date:
- Size: 11.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6949a3ac06727832b197a479aa5f0d5ac2a3a1d4b28f99fba7ae4bb119615015 |
|
MD5 | 913bc565c3fa8c1733b455e61396d4e7 |
|
BLAKE2b-256 | 120b56d4ce02b5597f3b4997c2540afd6e6e409476e617c3e4e820451743d392 |