Skip to main content

Electrical model fitting to impedance data

Project description

Introduction

This Python module is for fitting electrical models to measured impedance data. It also includes a command-line program to assist with automated fitting.

Installation

The easiest way is using the command line command:

$ pip install .

zfit

Here's an example of how model fitting can be performed using a Python script:

from zfitpy import zfit

net = "(CPE('K', 'alpha') | R('R2')) + R('R1')"
ranges = {'R1': (1e-3, 1e3), 'K': (1e-3, 1e3), 'alpha': (-1, 1), 'R2': (100, 1e4)}

data, fitmodel = zfit('E4990A-example1.csv', net, ranges, Ns=10)
print(fitmodel)
print(fitmodel.error)

Here Ns specifies the number of steps in each search range. It can be explicitly defined for each search range, for example,

ranges = {'R1': (1e-3, 1e3, 10), 'K': (1e-3, 1e3, 20), 'alpha': (-1, 1), 'R2': (100, 1e4)}

The error between the measured data and best-fit model can be plotted using:

from zfitpy import Plotter
plotter.Z_error(data, fitmodel)

Note, a parameter names cannot be a substring of another parameter name, i.e., 'R' cannot be used if there is a parameter 'R1'.

zfitpy

zfitpy is a command-line Python program. It is designed for fitting electrical models to impedance data. For example:

   $ zfitpy --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --ranges="{'R1':(0,5e3),'L1':(1e-3,20e-3),'R2':(0,0.1),'L2':(1e-3,20e-3)}" --input demo/E4990A-example1.csv --plot-error

The network is specified using Lcapy notation for networks. This example uses a network comprised of a parallel combination of RL series networks. The network can be drawn using:

   $ zfitpy --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --draw

The network in this example has four parameters: R1, L1, R2, and L2. A brute force search is performed for each component using the specified ranges; this is refined with a finishing search. The ranges are specified as a Python dictionary, keyed by component name, with the range for each component specified as a tuple. The number of steps in each range is 20 can be altered with the --steps option.

The impedance of the data and model can be plotted using:

   $ zfitpy --plot-fit --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --ranges="{'R1':(0,5e3),'L1':(1e-3,20e-3),'R2':(0,0.1),'L2':(1e-3,20e-3)}" --input demo/E4990A-example1.csv

The impedance error between the data and model can be plotted using:

   $ zfitpy --plot-error --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --ranges="{'R1':(0,5e3),'L1':(1e-3,20e-3),'R2':(0,0.1),'L2':(1e-3,20e-3)}" --input demo/E4990A-example1.csv

Here's another network using a constant phase element (CPE).

   $ zfitpy --net "(CPE('K', 'alpha') | R('R2')) + R('R1')" --draw

   $ zfitpy --plot-error --net "(CPE('K', 'alpha') | R('R2')) + R('R1')"  --ranges="{'R1':(0,1e3),'K':(1e-3,1e3),'alpha':(-1,1),'R2':(1e2,1e4)}" --input demo/E4990A-example1.csv

The data format for the plots depends on the extension. matplotlib is used for the plotting and so the pdf, png, pgf, and jpg formats are all supported. For example:

   $ zfitpy --net "CPE('K', 'alpha')" --draw --output CPE.png

The data can be plotted without fitting if the ranges option is not specified. For example:

   $ zfitpy --plot-data --input demo/E4990A-example1.csv

A Nyquist plot is generated if the --nyquist option is specified. Magnitude and phase is plotted is the --magphase option is specified. The plot style can be altered using the --style option to specify a Matplotlib style file.

Other command line options for zfitpy can be found with the --help option.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zfitpy-0.3.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

zfitpy-0.3-py3-none-any.whl (12.8 kB view details)

Uploaded Python 3

File details

Details for the file zfitpy-0.3.tar.gz.

File metadata

  • Download URL: zfitpy-0.3.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.9

File hashes

Hashes for zfitpy-0.3.tar.gz
Algorithm Hash digest
SHA256 475b804c5cd2b1d1bcb1bd052035658d2dc769fc7460019cc9c2925222692166
MD5 018201146cd21bbceb7cbc8f1c0d53aa
BLAKE2b-256 8f1199b725656da09bd9f3f58e323ee011913a064cf4c506e7eccb100da0720c

See more details on using hashes here.

File details

Details for the file zfitpy-0.3-py3-none-any.whl.

File metadata

  • Download URL: zfitpy-0.3-py3-none-any.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.9

File hashes

Hashes for zfitpy-0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 34899500f7717d806b63efbc41bea81d0d28ed440f2e7be6c8f00a2f66e4b618
MD5 0cd2a9137b0e6d2006f0fa99b3e68dac
BLAKE2b-256 8207676f68dfa8204aaa360e710a56ae0faa4b1639fdc3587f97dac319d34064

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page