Implementation of zhang2016dependency
Project description
zhang2016dependency
This package provides a simple implementation of the models proposed in the paper:
Zhang, R., Lee, H., & Radev, D. (2016). Dependency sensitive convolutional neural networks for modeling sentences and documents. arXiv preprint arXiv:1611.02361.
Installation
This package depends on the Keras library. This means you will need to install a backend library in order to use this module. Take a look to Keras installation to get more information.
After having installed the backend of yout choice, you just need to install this package using pip:
pip install zhang2016dependency
Usage
This package only provides a single model. To get detailed information on the parameters the model accepts, take a look to the documentation included with the module class.
Here is a complete example of instantiation of the model proposed in the original paper using two channel of randomly initialized word embeddings:
import numpy as np import numpy.random as rng vocabulary_size = 1000 embedding_size = 300 value = np.sqrt(6/embedding_size) weights_shape = (vocabulary_size+1, embedding_size) weights = rng.uniform(low=-value, high=value, size=weights_shape) channels = [ { 'weights': [weights], 'trainable': False, 'input_dim': vocabulary_size + 1, 'output_dim': embedding_size, 'name': 'random-embedding-1' }, { 'weights': [weights], 'trainable': True, 'input_dim': vocabulary_size + 1, 'output_dim': embedding_size, 'name': 'random-embedding-2' } ] windows = [ { 'filters': 100, 'kernel_size': 3, 'activation': 'relu', 'name': '3-grams' }, { 'filters': 100, 'kernel_size': 4, 'activation': 'relu', 'name': '4-grams' }, { 'filters': 100, 'kernel_size': 5, 'activation': 'relu', 'name': '5-grams' } ] from zhang2016dependency import Model model = Model(channels=channels, windows=windows, sentence_length=37, num_classes=6, dropout_rate=0.5, classifier_activation='softmax', include_top=True, name='DSCNN') model.compile(optimizer='adadelta', loss='categorical_crossentropy', metrics=['accuracy']) model.summary()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size zhang2016dependency-0.1.0-py3-none-any.whl (5.3 kB) | File type Wheel | Python version py3 | Upload date | Hashes View |
Filename, size zhang2016dependency-0.1.0.tar.gz (4.8 kB) | File type Source | Python version None | Upload date | Hashes View |
Hashes for zhang2016dependency-0.1.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c5596de3f35f91d9c7aed46164b53afa526ee438c5d995bb97d3fad5fc2fa841 |
|
MD5 | 180126e2fe138914e4e90d2dcf16373c |
|
BLAKE2-256 | b564d44410b884c202266d6cde121303e3b3256d475462337d0d3227dc9bc28d |
Hashes for zhang2016dependency-0.1.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8bb28d57b710cd713cd93a5b9f95cf51e57f9906ec282e5a29bc8a4b33c72932 |
|
MD5 | 01e077500c7ecdf35615f57e78fdbb6b |
|
BLAKE2-256 | 0adb2e87c80c5d219700f546390ce53f1829cab4b8f550898a83bde14bd8ab5d |