Skip to main content

Query U.S. state zipcodes without SQLite.

Project description

Zipcodes

Zipcodes is a simple library for querying U.S. zipcodes.

The Python sqlite3 module is not required in order to use this package.

>>> import zipcodes
>>> assert zipcodes.is_real('77429')
>>> assert len(zipcodes.similar_to('7742')) != 0
>>> exact_zip = zipcodes.matching('77429')[0]
>>> filtered_zips = zipcodes.filter_by(city="Cypress", state="TX") 
>>> assert exact_zip in filtered_zips
>>> pprint.pprint(exact_zip)
{'acceptable_cities': [],
  'active': True,
  'area_codes': ['281', '832'],
  'city': 'Cypress',
  'country': 'US',
  'county': 'Harris County',
  'lat': '29.9857',
  'long': '-95.6548',
  'state': 'TX',
  'timezone': 'America/Chicago',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '77429',
  'zip_code_type': 'STANDARD'}[

⚠️ The zipcode data was last updated on: Oct. 3, 2021 ⚠️

Downloads Supported Versions Contributors

Installation

Zipcodes is available on PyPI:

$ python -m pip install zipcodes

Zipcodes supports Python 2.6+ and Python 3.2+.

Compiling with PyInstaller

Add a data file to your PyInstaller bundle with the --add-data flag.

Linux and MacOS

--add-data "<path-to-package-install>/zipcodes/zips.json.bz2:zipcodes"

Windows

--add-data "<path-to-package-install>\zipcodes\zips.json.bz2;zipcodes"

Zipcode Data

The build script for the zipcode data outputs a JSON file containing all the zipcode data and zipped using bzip2. The data sources are stored under build/app/data.

Build the zipcode data for distribution:

$ build/app/__init__.py # outputs `zipcodes/zips.json.bz2`

Tests

The tests are defined in a declarative, table-based format that generates test cases.

Run the tests directly:

$ python tests/__init__.py 

Examples

>>> from pprint import pprint
>>> import zipcodes

>>> # Simple zip-code matching.
>>> pprint(zipcodes.matching('77429'))
[{'acceptable_cities': [],
  'active': True,
  'area_codes': ['281', '832'],
  'city': 'Cypress',
  'country': 'US',
  'county': 'Harris County',
  'lat': '29.9857',
  'long': '-95.6548',
  'state': 'TX',
  'timezone': 'America/Chicago',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '77429',
  'zip_code_type': 'STANDARD'}]


>>> # Handles of Zip+4 zip-codes nicely. :)
>>> pprint(zipcodes.matching('77429-1145'))
[{'acceptable_cities': [],
  'active': True,
  'area_codes': ['281', '832'],
  'city': 'Cypress',
  'country': 'US',
  'county': 'Harris County',
  'lat': '29.9857',
  'long': '-95.6548',
  'state': 'TX',
  'timezone': 'America/Chicago',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '77429',
  'zip_code_type': 'STANDARD'}]

>>> # Will try to handle invalid zip-codes gracefully...
>>> print(zipcodes.matching('06463'))
[]

>>> # Until it cannot.
>>> zipcodes.matching('0646a')
Traceback (most recent call last):
  ...
TypeError: Invalid characters, zipcode may only contain digits and "-".

>>> zipcodes.matching('064690')
Traceback (most recent call last):
  ...
TypeError: Invalid format, zipcode must be of the format: "#####" or "#####-####"

>>> zipcodes.matching(None)
Traceback (most recent call last):
  ...
TypeError: Invalid type, zipcode must be a string.

>>> # Whether the zip-code exists within the database.
>>> print(zipcodes.is_real('06463'))
False

>>> # How handy!
>>> print(zipcodes.is_real('06469'))
True

>>> # Search for zipcodes that begin with a pattern.
>>> pprint(zipcodes.similar_to('1018'))
[{'acceptable_cities': [],
  'active': False,
  'area_codes': ['212'],
  'city': 'New York',
  'country': 'US',
  'county': 'New York County',
  'lat': '40.71',
  'long': '-74',
  'state': 'NY',
  'timezone': 'America/New_York',
  'unacceptable_cities': ['J C Penney'],
  'world_region': 'NA',
  'zip_code': '10184',
  'zip_code_type': 'UNIQUE'},
 {'acceptable_cities': [],
  'active': True,
  'area_codes': ['212'],
  'city': 'New York',
  'country': 'US',
  'county': 'New York County',
  'lat': '40.7143',
  'long': '-74.0067',
  'state': 'NY',
  'timezone': 'America/New_York',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '10185',
  'zip_code_type': 'PO BOX'}]

>>> # Use filter_by to filter a list of zip-codes by specific attribute->value pairs.
>>> pprint(zipcodes.filter_by(city="Old Saybrook"))
[{'acceptable_cities': [],
  'active': True,
  'area_codes': ['860'],
  'city': 'Old Saybrook',
  'country': 'US',
  'county': 'Middlesex County',
  'lat': '41.3015',
  'long': '-72.3879',
  'state': 'CT',
  'timezone': 'America/New_York',
  'unacceptable_cities': ['Fenwick'],
  'world_region': 'NA',
  'zip_code': '06475',
  'zip_code_type': 'STANDARD'}]

>>> # Arbitrary nesting of similar_to and filter_by calls, allowing for great precision while filtering.
>>> pprint(zipcodes.similar_to('2', zips=zipcodes.filter_by(active=True, city='Windsor')))
[{'acceptable_cities': [],
  'active': True,
  'area_codes': ['757'],
  'city': 'Windsor',
  'country': 'US',
  'county': 'Isle of Wight County',
  'lat': '36.8628',
  'long': '-76.7143',
  'state': 'VA',
  'timezone': 'America/New_York',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '23487',
  'zip_code_type': 'STANDARD'},
 {'acceptable_cities': ['Askewville'],
  'active': True,
  'area_codes': ['252'],
  'city': 'Windsor',
  'country': 'US',
  'county': 'Bertie County',
  'lat': '35.9942',
  'long': '-76.9422',
  'state': 'NC',
  'timezone': 'America/New_York',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '27983',
  'zip_code_type': 'STANDARD'},
 {'acceptable_cities': [],
  'active': True,
  'area_codes': ['803'],
  'city': 'Windsor',
  'country': 'US',
  'county': 'Aiken County',
  'lat': '33.4730',
  'long': '-81.5132',
  'state': 'SC',
  'timezone': 'America/New_York',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '29856',
  'zip_code_type': 'STANDARD'}]

>>> # Have any other ideas? Make a pull request and start contributing today!
>>> # Made with love by Sean Pianka

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zipcodes-1.2.0.tar.gz (721.6 kB view hashes)

Uploaded Source

Built Distribution

zipcodes-1.2.0-py2.py3-none-any.whl (719.6 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page