Skip to main content

No-SQLite U.S. zipcode validation Python package, ready for use in AWS Lambda

Reason this release was yanked:

Did not update version in code before release

Project description

Zipcodes

Zipcodes is a package for Python 3 and Python 2.7 which supports lookup and filtering of zipcode data for the U.S.

https://pepy.tech/badge/zipcodes

Installation

$ pip install zipcodes

Synopsis

In search for a package to lookup U.S. zipcode data, zipcode is one of the top results. However, if you’re deploying into a cloud (and in my case, serverless) environment like AWS Lambda, then the above package, which depends on SQLite, is not an option due to AWS Lambda’s lack of runtime SQLite support.

The data used in building zipcodes/zips.json.bz2 can be found under build/app/data/. The scripts necessary to reproduce and build zipcodes/zips.json.bz2 can be found under build/app/__init__.py.

The tests are defined in and are generated from a custom, declarative format.

Below is the expected usage of this package and a demonstration of supported functionality.

>>> from pprint import pprint
>>> import zipcodes

>>> # Simple zip-code matching.
>>> pprint(zipcodes.matching('77429'))
[{'acceptable_cities': [],
  'active': True,
  'area_codes': ['281', '832'],
  'city': 'Cypress',
  'country': 'US',
  'county': 'Harris County',
  'lat': '29.9857',
  'long': '-95.6548',
  'state': 'TX',
  'timezone': 'America/Chicago',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '77429',
  'zip_code_type': 'STANDARD'}]


>>> # Handles of Zip+4 zip-codes nicely. :)
>>> pprint(zipcodes.matching('77429-1145'))
[{'acceptable_cities': [],
  'active': True,
  'area_codes': ['281', '832'],
  'city': 'Cypress',
  'country': 'US',
  'county': 'Harris County',
  'lat': '29.9857',
  'long': '-95.6548',
  'state': 'TX',
  'timezone': 'America/Chicago',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '77429',
  'zip_code_type': 'STANDARD'}]

>>> # Will try to handle invalid zip-codes gracefully...
>>> print(zipcodes.matching('06463'))
[]

>>> # Until it cannot.
>>> zipcodes.matching('0646a')
Traceback (most recent call last):
  ...
TypeError: Invalid characters, zipcode may only contain digits and "-".

>>> zipcodes.matching('064690')
Traceback (most recent call last):
  ...
TypeError: Invalid format, zipcode must be of the format: "#####" or "#####-####"

>>> zipcodes.matching(None)
Traceback (most recent call last):
  ...
TypeError: Invalid type, zipcode must be a string.

>>> # Whether the zip-code exists within the database.
>>> print(zipcodes.is_real('06463'))
False

>>> # How handy!
>>> print(zipcodes.is_real('06469'))
True

>>> # Search for zipcodes that begin with a pattern.
>>> pprint(zipcodes.similar_to('1018'))
[{'acceptable_cities': [],
  'active': False,
  'area_codes': ['212'],
  'city': 'New York',
  'country': 'US',
  'county': 'New York County',
  'lat': '40.71',
  'long': '-74',
  'state': 'NY',
  'timezone': 'America/New_York',
  'unacceptable_cities': ['J C Penney'],
  'world_region': 'NA',
  'zip_code': '10184',
  'zip_code_type': 'UNIQUE'},
 {'acceptable_cities': [],
  'active': True,
  'area_codes': ['212'],
  'city': 'New York',
  'country': 'US',
  'county': 'New York County',
  'lat': '40.7143',
  'long': '-74.0067',
  'state': 'NY',
  'timezone': 'America/New_York',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '10185',
  'zip_code_type': 'PO BOX'}]

>>> # Use filter_by to filter a list of zip-codes by specific attribute->value pairs.
>>> pprint(zipcodes.filter_by(city="Old Saybrook"))
[{'acceptable_cities': [],
  'active': True,
  'area_codes': ['860'],
  'city': 'Old Saybrook',
  'country': 'US',
  'county': 'Middlesex County',
  'lat': '41.3015',
  'long': '-72.3879',
  'state': 'CT',
  'timezone': 'America/New_York',
  'unacceptable_cities': ['Fenwick'],
  'world_region': 'NA',
  'zip_code': '06475',
  'zip_code_type': 'STANDARD'}]

>>> # Arbitrary nesting of similar_to and filter_by calls, allowing for great precision while filtering.
>>> pprint(zipcodes.similar_to('2', zips=zipcodes.filter_by(active=True, city='Windsor')))
[{'acceptable_cities': [],
  'active': True,
  'area_codes': ['757'],
  'city': 'Windsor',
  'country': 'US',
  'county': 'Isle of Wight County',
  'lat': '36.8628',
  'long': '-76.7143',
  'state': 'VA',
  'timezone': 'America/New_York',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '23487',
  'zip_code_type': 'STANDARD'},
 {'acceptable_cities': ['Askewville'],
  'active': True,
  'area_codes': ['252'],
  'city': 'Windsor',
  'country': 'US',
  'county': 'Bertie County',
  'lat': '35.9942',
  'long': '-76.9422',
  'state': 'NC',
  'timezone': 'America/New_York',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '27983',
  'zip_code_type': 'STANDARD'},
 {'acceptable_cities': [],
  'active': True,
  'area_codes': ['803'],
  'city': 'Windsor',
  'country': 'US',
  'county': 'Aiken County',
  'lat': '33.4730',
  'long': '-81.5132',
  'state': 'SC',
  'timezone': 'America/New_York',
  'unacceptable_cities': [],
  'world_region': 'NA',
  'zip_code': '29856',
  'zip_code_type': 'STANDARD'}]

>>> # Have any other ideas? Make a pull request and start contributing today!
>>> # Made with love by Sean Pianka

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zipcodes-1.1.1.tar.gz (719.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

zipcodes-1.1.1-py2.py3-none-any.whl (717.4 kB view details)

Uploaded Python 2Python 3

File details

Details for the file zipcodes-1.1.1.tar.gz.

File metadata

  • Download URL: zipcodes-1.1.1.tar.gz
  • Upload date:
  • Size: 719.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.6

File hashes

Hashes for zipcodes-1.1.1.tar.gz
Algorithm Hash digest
SHA256 31bc9fbdac3c7088e60763758be0fa2f85fa3c3635f2bdae83592956a8351a62
MD5 057dd0cc961f862d3f3667a02999b752
BLAKE2b-256 0080371d23c7bfa3691d8928dd1b51a96c5fac49119ee0be31c4b9cee66413ef

See more details on using hashes here.

File details

Details for the file zipcodes-1.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: zipcodes-1.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 717.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.6

File hashes

Hashes for zipcodes-1.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 8c631bd03cc02fe8fa55312583e644777a2739a81c849ee53e24b0ddd2f73a1c
MD5 d1ca037b59c4367584a6645eb210ef4e
BLAKE2b-256 21f27aba0b6886462a5b6b0e2f3c094826084f6a68b32bfef4ed9a3a4e2ecc81

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page