Skip to main content

No project description provided

Project description

Description: # zmesh
Multi-Label Marching Cubes & Simplification

from zmesh import Mesher

labels = ... # some dense volumetric labeled image
mesher = Mesher( (4,4,40) ) # anisotropy of image
mesher.mesh(labels) # initial marching cubes pass

meshes = []
for obj_id in mesher.ids():
normals=False, # whether to calculate normals or not

# tries to reduce triangles by this factor
# 0 disables simplification

# Max tolerable error in physical distance
mesher.erase(obj_id) # delete high res mesh

mesher.clear() # clear memory retained by mesher

## Installation

pip install zmesh

## Performance Tuning

- The mesher will consume about double memory in 64 bit mode if the size of the
object exceeds <511, 1023, 511> on the x, y, or z axes. This is due to a limitation
of the 32-bit format. It might be possible to get x to 1023 as well.

## Credits

Thanks to Aleks Zlateski for creating and sharing this beautiful mesher.

Later changes by Will Silversmith and Nico Kemnitz.

## References

1. W. Lorensen and H. Cline. "Marching Cubes: A High Resolution 3D Surface Construction Algorithm". pp 163-169. Computer Graphics, Volume 21, Number 4, July 1987.
2. TK Quadratic Edge Collapse Paper

Platform: UNKNOWN
Classifier: Intended Audience :: Developers
Classifier: Development Status :: 4 - Beta
Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Topic :: Utilities
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Visualization
Classifier: Topic :: Multimedia :: Graphics :: 3D Modeling

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for zmesh, version 0.0.1.dev3
Filename, size File type Python version Upload date Hashes
Filename, size zmesh-0.0.1.dev3.tar.gz (242.2 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page