Skip to main content

This project uses shapely values for selecting Top n features compatible with scikit learn pipeline

Project description

Zoish

Zoish is a package built to ease machine learning development. One of its main parts is a class that uses SHAP (SHapley Additive exPlanation) for a better feature selection. It is compatible with scikit-learn pipeline . This package uses FastTreeSHAP while calculation shap values and SHAP for plotting.

Introduction

ScallyShapFeatureSelector of Zoish package can receive various parameters. From a tree-based estimator class to its tunning parameters and from Grid search, Random Search, or Optuna to their parameters. Samples will be split to train and validation set, and then optimization will estimate optimal related parameters.

After that, the best subset of features with higher shap values will be returned. This subset can be used as the next steps of the Sklearn pipeline.

Installation

Zoish package is available on PyPI and can be installed with pip:

pip install zoish

Supported estimators

  • XGBRegressor XGBoost
  • XGBClassifier XGBoost
  • RandomForestClassifier
  • RandomForestRegressor
  • CatBoostClassifier
  • CatBoostRegressor
  • BalancedRandomForestClassifier
  • LGBMClassifier LightGBM
  • LGBMRegressor LightGBM

Usage

  • Find features using specific tree-based models with the highest shap values after hyper-parameter optimization
  • Plot the shap summary plot for selected features
  • Return a sorted two-column Pandas data frame with a list of features and shap values.

Examples

Import required libraries

from zoish.feature_selectors.zoish_feature_selector import ScallyShapFeatureSelector
import xgboost
from optuna.pruners import HyperbandPruner
from optuna.samplers._tpe.sampler import TPESampler
from sklearn.model_selection import KFold,train_test_split
import pandas as pd
from sklearn.pipeline import Pipeline
from feature_engine.imputation import (
    CategoricalImputer,
    MeanMedianImputer
    )
from category_encoders import OrdinalEncoder
from sklearn.linear_model import LinearRegression
from sklearn.metrics import (
    r2_score
    )
from zoish.utils.helper_funcs import catboost

Computer Hardware Data Set (a regression problem)

urldata= "https://archive.ics.uci.edu/ml/machine-learning-databases/cpu-performance/machine.data"
# column names
col_names=[
    "vendor name",
    "Model Name",
    "MYCT",
    "MMIN",
    "MMAX",
    "CACH",
    "CHMIN",
    "CHMAX",
    "PRP"
]
# read data
data = pd.read_csv(urldata,header=None,names=col_names,sep=',')

Train test split

X = data.loc[:, data.columns != "PRP"]
y = data.loc[:, data.columns == "PRP"]
X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.33, random_state=42)

Find feature types for later use

int_cols =  X_train.select_dtypes(include=['int']).columns.tolist()
float_cols =  X_train.select_dtypes(include=['float']).columns.tolist()
cat_cols =  X_train.select_dtypes(include=['object']).columns.tolist()

Define Feature selector and set its arguments

SFC_CATREG_OPTUNA = ScallyShapFeatureSelector(
        n_features=5,
        estimator=catboost.CatBoostRegressor(),
        estimator_params={
                  # desired lower bound and upper bound for depth
                  'depth'         : [6,10],
                  # desired lower bound and upper bound for depth
                  'learning_rate' : [0.05, 0.1],  
                    },
        hyper_parameter_optimization_method="optuna",
        shap_version="v0",
        measure_of_accuracy="r2",
        list_of_obligatory_features=[],
        test_size=0.33,
        cv=KFold(n_splits=3, random_state=42, shuffle=True),
        with_shap_summary_plot=True,
        with_stratified=False,
        verbose=0,
        random_state=42,
        n_jobs=-1,
        n_iter=100,
        eval_metric=None,
        number_of_trials=20,
        sampler=TPESampler(),
        pruner=HyperbandPruner(),
    )

Build sklearn Pipeline

pipeline =Pipeline([
            # int missing values imputers
            ('intimputer', MeanMedianImputer(
                imputation_method='median', variables=int_cols)),
            # category missing values imputers
            ('catimputer', CategoricalImputer(variables=cat_cols)),
            #
            ('catencoder', OrdinalEncoder()),
            # feature selection
            ('SFC_CATREG_OPTUNA', SFC_CATREG_OPTUNA),
            # add any regression model from sklearn e.g., LinearRegression
            ('regression', LinearRegression())


 ])

pipeline.fit(X_train,y_train)
y_pred = pipeline.predict(X_test)


print('r2 score : ')
print(r2_score(y_test,y_pred))

More examples are available in the examples.

License

Licensed under the BSD 2-Clause License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zoish-1.57.0.tar.gz (116.0 kB view details)

Uploaded Source

Built Distribution

zoish-1.57.0-py3-none-any.whl (116.7 kB view details)

Uploaded Python 3

File details

Details for the file zoish-1.57.0.tar.gz.

File metadata

  • Download URL: zoish-1.57.0.tar.gz
  • Upload date:
  • Size: 116.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.14 CPython/3.10.5 Linux/5.10.104-linuxkit

File hashes

Hashes for zoish-1.57.0.tar.gz
Algorithm Hash digest
SHA256 d59188fc745f9ae1ccdb2d0e4460683de33975988a9d4af3d14f82da45d4808b
MD5 c4e478271be19602cdcecf0ae12ec678
BLAKE2b-256 a2beda67283b6b34ecd0678b1de224d890957dc1662381d29777bcb3e5ebcedb

See more details on using hashes here.

File details

Details for the file zoish-1.57.0-py3-none-any.whl.

File metadata

  • Download URL: zoish-1.57.0-py3-none-any.whl
  • Upload date:
  • Size: 116.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.14 CPython/3.10.5 Linux/5.10.104-linuxkit

File hashes

Hashes for zoish-1.57.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f39ab1eeb6cdbbd17c63d14341153b2439760fb1490e979946e4cabe9a333d30
MD5 b12a27b1585c15abbefaae48acdcec8f
BLAKE2b-256 361ffd771920ebce6684de958fdf584517edb6a55f2bb2482bbea43e88c67a60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page