A small library for managing deep learning models, hyper parameters and datasets
Project description
Zookeeper
A small library for configuring modular applications.
Installation
pip install zookeeper
Components
The fundamental building block of Zookeeper is a
Component
. Component
subclasses can have
configurable parameters, which are declared using class-level type annotations
(in a similar way to Python
dataclasses). These
parameters can be Python objects or nested sub-components, and need not be set
with a default value.
For example:
from zookeeper import Component
class ChildComponent(Component):
a: int # An `int` parameter, with no default set
b: str = "foo" # A `str` parameter, which by default will be `foo`
class ParentComponent(Component):
a: int # The same `int` parameter as the child
child: ChildComponent # A nested component parameter, of type `ChildComponent`
After instantiation, components can be 'configured' with a configuration dictionary, containing values for a tree of nested parameters. This process automatically injects the correct values into each parameter.
If a child sub-component declares a parameter which already exists in some containing parent, then it will pick up the value that's set on the parent, unless a 'scoped' value is set on the child.
For example:
p = ParentComponent()
p.configure({
"a": 5,
"child.a": 4,
})
>>> 'ChildComponent' is the only concrete component class that satisfies the type
>>> of the annotated parameter 'ParentComponent.child'. Using an instance of this
>>> class by default.
print(p)
>>> ParentComponent(
>>> a = 5,
>>> child = ChildComponent(
>>> a = 4,
>>> b = "foo"
>>> )
>>> )
Tasks and the CLI
The best way to define runnable tasks with Zookeeper is to subclass
Task
and override the run
method.
Zookeeper provides a small mechanism to run tasks from a CLI, using the
decorator @add_task_to_cli
. The CLI will automatically instantiate the task
and call configure()
, passing in configuration parsed from command line
arguments.
For example:
from zookeeper import Task
from zookeeper.cli import add_task_to_cli, cli
@add_task_to_cli
class UseChildA(Task):
parent: ParentComponent
def run(self):
print(self.parent.child.a)
@add_task_to_cli
class UseParentA(UseChildA):
def run(self):
print(self.parent.a)
if __name__ == "__main__":
cli()
Running the above file then gives a nice CLI interface:
python test.py use_child_a
>>> ValueError: No configuration value found for annotated parameter 'UseChildA.parent.a' of type 'int'.
python test.py use_child_a a=5
>>> 5
python test.py use_child_a a=5 child.a=3
>>> 3
python test.py use_parent_a a=5 child.a=3
>>> 5
Using Zookeeper to define Larq or Keras experiments
See examples/larq_experiment.py for an example of how to use Zookeeper to define all the necessary components (dataset, preprocessing, and model) of a Larq experiment: training a BinaryNet on CIFAR-10. This example can be easily adapted to other Larq or Keras models and other datasets.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file zookeeper-1.0.dev4.tar.gz
.
File metadata
- Download URL: zookeeper-1.0.dev4.tar.gz
- Upload date:
- Size: 16.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d09a7e010adfb4a0b561d2537109182d2aaef53710d0eba4bd18e15c0871493c |
|
MD5 | fcccfe5d1036f5acab05e7d543185d82 |
|
BLAKE2b-256 | 9ba4ec743ef709ea51aedf966b1ddb1976e0587cbacbdcb9cc9807f2ae6141c5 |
File details
Details for the file zookeeper-1.0.dev4-py3-none-any.whl
.
File metadata
- Download URL: zookeeper-1.0.dev4-py3-none-any.whl
- Upload date:
- Size: 22.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb9d53710c986b15213850091b738a21de8c4e6864e2e0890ac798c4f583f804 |
|
MD5 | 0790eac1c6fef3594b397737b20cc26f |
|
BLAKE2b-256 | 52c04880c4c3456acf32ec5412f9599dcc870927c7f2951c9aa07b505c1e5317 |