Skip to main content

Mappings based transparently on multiple BTrees; good for rotating caches and logs.

Project description

BForests are dictionary-like objects that use multiple BTrees for a backend and support rotation of the composite trees. This supports various implementations of timed member expirations, enabling caches and semi-persistent storage. A useful and simple subclass would be to promote a key-value pair to the first (newest) bucket whenever the key is accessed, for instance. It also is useful with disabling the rotation capability.

Like btrees, bforests come in four flavors: Integer-Integer (IIBForest), Integer-Object (IOBForest), Object-Integer (OIBForest), and Object-Object (OOBForest). The examples here will deal with them in the abstract: we will create classes from the imaginary and representative BForest class, and generate keys from KeyGenerator and values from ValueGenerator. From the examples you should be able to extrapolate usage of all four types.

First let’s instantiate a bforest and look at an empty example. By default, a new bforest creates two composite btree buckets.

>>> d = BForest()
>>> list(d.keys())
[]
>>> list(d.values())
[]
>>> len(d.buckets)
2
>>> dummy_key = KeyGenerator()
>>> d.get(dummy_key)
>>> d.get(dummy_key, 42)
42

Now we’ll populate it. We’ll first create a dictionary we’ll use to compare.

>>> original = {}
>>> for i in range(10):
...     original[KeyGenerator()] = ValueGenerator()
...
>>> d.update(original)
>>> d == original
True
>>> d_keys = list(d.keys())
>>> d_keys.sort()
>>> o_keys = original.keys()
>>> o_keys.sort()
>>> d_keys == o_keys
True
>>> d_values = list(d.values())
>>> d_values.sort()
>>> o_values = original.values()
>>> o_values.sort()
>>> o_values == d_values
True
>>> d_items = list(d.items())
>>> d_items.sort()
>>> o_items = original.items()
>>> o_items.sort()
>>> o_items == d_items
True
>>> key, value = d.popitem()
>>> value == original.pop(key)
True
>>> key, value = original.popitem()
>>> value == d.pop(key)
True
>>> len(d) == len(original)
True

Now let’s rotate the buckets.

>>> d.rotateBucket()

…and we’ll do the exact same test as above, first.

>>> d == original
True
>>> d_keys = list(d.keys())
>>> d_keys.sort()
>>> o_keys = original.keys()
>>> o_keys.sort()
>>> d_keys == o_keys
True
>>> d_values = list(d.values())
>>> d_values.sort()
>>> o_values = original.values()
>>> o_values.sort()
>>> o_values == d_values
True
>>> d_items = list(d.items())
>>> d_items.sort()
>>> o_items = original.items()
>>> o_items.sort()
>>> o_items == d_items
True
>>> key, value = d.popitem()
>>> value == original.pop(key)
True
>>> key, value = original.popitem()
>>> value == d.pop(key)
True
>>> len(d) == len(original)
True

Now we’ll make a new dictionary to represent changes made after the bucket rotation.

>>> second = {}
>>> for i in range(10):
...     key = KeyGenerator()
...     value = ValueGenerator()
...     second[key] = value
...     d[key] = value
...
>>> original.update(second)

…and we’ll do almost the exact same test as above, first.

>>> d == original
True
>>> d_keys = list(d.keys())
>>> d_keys.sort()
>>> o_keys = original.keys()
>>> o_keys.sort()
>>> d_keys == o_keys
True
>>> d_values = list(d.values())
>>> d_values.sort()
>>> o_values = original.values()
>>> o_values.sort()
>>> o_values == d_values
True
>>> d_items = list(d.items())
>>> d_items.sort()
>>> o_items = original.items()
>>> o_items.sort()
>>> o_items == d_items
True
>>> key, value = d.popitem()
>>> ignore = second.pop(key, None) # keep second up-to-date
>>> value == original.pop(key)
True
>>> key, value = original.popitem()
>>> ignore = second.pop(key, None) # keep second up-to-date
>>> value == d.pop(key)
True
>>> len(d) == len(original)
True

Now if we rotate the buckets, the first set of items will be gone, but the second will remain.

>>> d.rotateBucket()
>>> d == original
False
>>> d == second
True

Let’s set a value, check the copy behavior, and then rotate it one more time.

>>> third = {KeyGenerator(): ValueGenerator()}
>>> d.update(third)
>>> copy = d.copy()
>>> copy == d
True
>>> copy != second # because second doesn't have the values of third
True
>>> list(copy.buckets[0].items()) == list(d.buckets[0].items())
True
>>> list(copy.buckets[1].items()) == list(d.buckets[1].items())
True
>>> copy[KeyGenerator()] = ValueGenerator()
>>> copy == d
False
>>> d.rotateBucket()
>>> d == third
True
>>> d.clear()
>>> d == BForest() == {}
True
>>> d.update(second)

We’ll make a value in one bucket that we’ll override in another.

>>> d[third.keys()[0]] = ValueGenerator()
>>> d.rotateBucket()
>>> d.update(third)
>>> second.update(third)
>>> d == second
True
>>> second == d
True

The tree method converts the bforest to a btree as efficiently as I know how for a common case of more items in buckets than buckets.

>>> tree = d.tree()
>>> d_items = list(d.items())
>>> d_items.sort()
>>> t_items = list(tree.items())
>>> t_items.sort()
>>> t_items == d_items
True

Finally, comparisons work similarly to dicts but in a simpleminded way–improvements welcome! We’ve already looked at a lot of examples above, but here are some additional cases

>>> d == None
False
>>> d == [1, 2]
False
>>> d != None
True
>>> None == d
False
>>> d != None
True
>>> d >= second
True
>>> d >= dict(second)
True
>>> d <= second
True
>>> d <= dict(second)
True
>>> d > second
False
>>> d > dict(second)
False
>>> d < second
False
>>> d > dict(second)
False
>>> second.popitem()[0] in d
True
>>> d > second
True
>>> d < second
False
>>> d >= second
True
>>> d <= second
False
>>> second < d
True
>>> second > d
False
>>> second <= d
True
>>> second >= d
False

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zope.bforest-1.1.1.tar.gz (11.6 kB view details)

Uploaded Source

File details

Details for the file zope.bforest-1.1.1.tar.gz.

File metadata

File hashes

Hashes for zope.bforest-1.1.1.tar.gz
Algorithm Hash digest
SHA256 8f2bc67875f705d30e5ee08268207e18fc0de27791c7f12bb1321a3e50ed8558
MD5 02dac543994f4f3763d1eb0cf49c9a0c
BLAKE2b-256 5ec9ff7ee89f5ed7a6702399fc3dd25f9459f793345395a7d33395726eb71726

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page