Skip to main content

Zope3 Cached Descriptors

Project description

Cached Descriptors

Changes for zope.cachedescriptors

3.4.1 (2008-04-23)

  • Backported changes from trunk which removes dependency to ZODB.

3.4.0 (2007-08-30)

Initial release as an independent package

Detailed Documentation

Cached descriptors

Cached descriptors cache their output. They take into account instance attributes that they depend on, so when the instance attributes change, the descriptors will change the values they return.

Cached descriptors cache their data in _v_ attributes, so they are also useful for managing the computation of volatile attributes for persistent objects.

Persistent descriptors:

property

A simple computed property. See property.txt.

method

Idempotent method. The return values are cached based on method arguments and on any instance attributes that the methods are defined to depend on.

Note, only a cache based on arguments has been implemented so far.

Cached Properties

Cached properties are computed properties that cache their computed values. They take into account instance attributes that they depend on, so when the instance attributes change, the properties will change the values they return.

Cached properties cache their data in _v_ attributes, so they are also useful for managing the computation of volatile attributes for persistent objects. Let’s look at an example:

>>> from zope.cachedescriptors import property
>>> import math

>>> class Point:
...
...     def __init__(self, x, y):
...         self.x, self.y = x, y
...
...     def radius(self):
...         print 'computing radius'
...         return math.sqrt(self.x**2 + self.y**2)
...     radius = property.CachedProperty(radius, 'x', 'y')

>>> point = Point(1.0, 2.0)

If we ask for the radius the first time:

>>> '%.2f' % point.radius
computing radius
'2.24'

We see that the radius function is called, but if we ask for it again:

>>> '%.2f' % point.radius
'2.24'

The function isn’t called. If we change one of the attribute the radius depends on, it will be recomputed:

>>> point.x = 2.0
>>> '%.2f' % point.radius
computing radius
'2.83'

But changing other attributes doesn’t cause recomputation:

>>> point.q = 1
>>> '%.2f' % point.radius
'2.83'

Note that we don’t have any non-volitile attributes added:

>>> names = [name for name in point.__dict__ if not name.startswith('_v_')]
>>> names.sort()
>>> names
['q', 'x', 'y']

Lazy Computed Attributes

The property module provides another descriptor that supports a slightly different caching model: lazy attributes. Like cached proprties, they are computed the first time they are used. however, they aren’t stored in volatile attributes and they aren’t automatically updated when other attributes change. Furthermore, the store their data using their attribute name, thus overriding themselves. This provides much faster attribute access after the attribute has been computed. Let’s look at the previous example using lazy attributes:

>>> class Point:
...
...     def __init__(self, x, y):
...         self.x, self.y = x, y
...
...     def radius(self):
...         print 'computing radius'
...         return math.sqrt(self.x**2 + self.y**2)
...     radius = property.Lazy(radius)

>>> point = Point(1.0, 2.0)

If we ask for the radius the first time:

>>> '%.2f' % point.radius
computing radius
'2.24'

We see that the radius function is called, but if we ask for it again:

>>> '%.2f' % point.radius
'2.24'

The function isn’t called. If we change one of the attribute the radius depends on, it still isn’t called:

>>> point.x = 2.0
>>> '%.2f' % point.radius
'2.24'

If we want the radius to be recomputed, we have to manually delete it:

>>> del point.radius

>>> point.x = 2.0
>>> '%.2f' % point.radius
computing radius
'2.83'

Note that the radius is stored in the instance dictionary:

>>> '%.2f' % point.__dict__['radius']
'2.83'

The lazy attribute needs to know the attribute name. It normally deduces the attribute name from the name of the function passed. If we want to use a different name, we need to pass it:

>>> def d(point):
...     print 'computing diameter'
...     return 2*point.radius

>>> Point.diameter = property.Lazy(d, 'diameter')
>>> '%.2f' % point.diameter
computing diameter
'5.66'

readproperties

readproperties are like lazy computed attributes except that the attribute isn’t set by the property:

>>> class Point:
...
...     def __init__(self, x, y):
...         self.x, self.y = x, y
...
...     def radius(self):
...         print 'computing radius'
...         return math.sqrt(self.x**2 + self.y**2)
...     radius = property.readproperty(radius)

>>> point = Point(1.0, 2.0)

>>> '%.2f' % point.radius
computing radius
'2.24'

>>> '%.2f' % point.radius
computing radius
'2.24'

But you can replace the property by setting a value. This is the major difference to the builtin property:

>>> point.radius = 5
>>> point.radius
5

cachedIn

The cachedIn property allows to specify the attribute where to store the computed value:

>>> class Point:
...
...     def __init__(self, x, y):
...         self.x, self.y = x, y
...
...     @property.cachedIn('_radius_attribute')
...     def radius(self):
...         print 'computing radius'
...         return math.sqrt(self.x**2 + self.y**2)

>>> point = Point(1.0, 2.0)

>>> '%.2f' % point.radius
computing radius
'2.24'

>>> '%.2f' % point.radius
'2.24'

The radius is cached in the attribute with the given name, _radius_attribute in this case:

>>> '%.2f' % point._radius_attribute
'2.24'

When the attribute is removed the radius is re-calculated once. This allows invalidation:

>>> del point._radius_attribute

>>> '%.2f' % point.radius
computing radius
'2.24'

>>> '%.2f' % point.radius
'2.24'

Method Cache

cachedIn

The cachedIn property allows to specify the attribute where to store the computed value:

>>> import math
>>> from zope.cachedescriptors import method
>>> class Point(object):
...
...     def __init__(self, x, y):
...         self.x, self.y = x, y
...
...     @method.cachedIn('_cache')
...     def distance(self, x, y):
...         print 'computing distance'
...         return math.sqrt((self.x - x)**2 + (self.y - y)**2)
...
>>> point = Point(1.0, 2.0)

The value is computed once:

>>> point.distance(2, 2)
computing distance
1.0
>>> point.distance(2, 2)
1.0

Using different arguments calculates a new distance:

>>> point.distance(5, 2)
computing distance
4.0
>>> point.distance(5, 2)
4.0

The data is stored at the given _cache attribute:

>>> isinstance(point._cache, dict)
True
>>> sorted(point._cache.items())
[(((2, 2), ()), 1.0), (((5, 2), ()), 4.0)]

It is possible to exlicitly invalidate the data:

>>> point.distance.invalidate(point, 5, 2)
>>> point.distance(5, 2)
computing distance
4.0

Invalidating keys which are not in the cache, does not result in an error:

>>> point.distance.invalidate(point, 47, 11)

It is possible to pass in a factory for the cache attribute. Create another Point class:

>>> class MyDict(dict):
...     pass
>>> class Point(object):
...
...     def __init__(self, x, y):
...         self.x, self.y = x, y
...
...     @method.cachedIn('_cache', MyDict)
...     def distance(self, x, y):
...         print 'computing distance'
...         return math.sqrt((self.x - x)**2 + (self.y - y)**2)
...
>>> point = Point(1.0, 2.0)
>>> point.distance(2, 2)
computing distance
1.0

Now the cache is a MyDict instance:

>>> isinstance(point._cache, MyDict)
True

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zope.cachedescriptors-3.4.1.tar.gz (7.9 kB view details)

Uploaded Source

File details

Details for the file zope.cachedescriptors-3.4.1.tar.gz.

File metadata

File hashes

Hashes for zope.cachedescriptors-3.4.1.tar.gz
Algorithm Hash digest
SHA256 83b2de4ae5bf7a4db833a5db9bff4682c7fbbf6d4969c0df00c743d4f61de5ae
MD5 e29c3cb2f3a3ebea3d562c817dffcb3e
BLAKE2b-256 4655170e88ae72533e866c89345dc7ceb2188f5f37e6dd9c08f3988d876a4232

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page