Skip to main content

Zrb LLM plugin

Project description

Zrb Ollama

Zrb Ollama is a Pypi package that acts as LiteLLM's wrapper, allowing you to incorporate LLM into your workflow.

Zrb Ollama is a part of the Zrb ecosystem, but you can install it independently from Zrb.

Installation

You can install Zrb Ollama by invoking any of the following commands:

# From pypi
pip install zrb-ollama[chromadb,aws]

# From github
pip install git+https://github.com/state-alchemists/zrb-ollama.git@main

# From directory
pip install --use-feature=in-tree-build path/to/this/directory

By default, Zrb Ollama uses Ollama-based LLM. You can install Ollama by visiting the official website: https://ollama.ai/.

The default LLM is ollama/mistral:7b-instruct, while the default embedding LLM is ollama/nomic-embed-text.

You can change this by setting the model parameter on LLMTask or the create_rag function. See LiteLLM provider to use custom LLM.

CLI Command

Zrb Ollama provides a simple CLI command so you can interact with the LLM immediately. The LLM has two tools:

  • query_internet
  • run_shell_command

To interact with the LLM, you can invoke the following command.

zrb-ollama

Using LLMTask

Zrb Ollama provides a task named LLMTask, allowing you to create a Zrb Task with a custom model or tools.

from zrb import runner, StrInput
from zrb_ollama import LLMTask
from zrb_ollama.tools import query_internet, create_rag

import os

_CURRENT_DIR = os.path.dirname(__file__)
with open(os.path.join(_CURRENT_DIR, "john-titor.md")) as f:
    john_titor_article = f.read()

ask = LLMTask(
    name="ask",
    inputs=[
        StrInput(name="user-prompt", default="How John Titor introduce himself?"),
    ],
    model="gpt-4o",
    user_message="{{input.user_prompt}}",
    tools=[
        create_rag(
            documents=[john_titor_article],
            model="text-embedding-ada-002",
            rag_description="Look for anything related to John Titor"
        ),
        query_internet,
    ]
)
runner.register(ask)

Assuming there is a file named john-titor.md, you can invoke the Task by invoking the following command.

zrb ask

The LLM can browse the article or look for anything on the internet.

Using Agent

Under the hood, LLMTask makes use of Agent. You can create and interact with the agent programmatically as follows.

from zrb_ollama import agent
from zrb_ollama.tools import create_rag, query_internet

import asyncio
import os

_CURRENT_DIR = os.path.dirname(__file__)
with open(os.path.join(_CURRENT_DIR, "john-titor.md")) as f:
    john_titor_article = f.read()


agent = Agent(
    model="gpt-4o",
    tools=[
        create_rag(
            documents=[john_titor_article],
            model="text-embedding-ada-002",
            rag_description="Look for anything related to John Titor"
        ),
        query_internet,
    ]
)
result = asyncio.run(agent.add_user_message("How John Titor introduce himself?"))
print(result)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zrb_ollama-0.1.0.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

zrb_ollama-0.1.0-py3-none-any.whl (14.5 kB view details)

Uploaded Python 3

File details

Details for the file zrb_ollama-0.1.0.tar.gz.

File metadata

  • Download URL: zrb_ollama-0.1.0.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.0 Linux/5.15.133.1-microsoft-standard-WSL2

File hashes

Hashes for zrb_ollama-0.1.0.tar.gz
Algorithm Hash digest
SHA256 1e37dc29abc8fb2b43d540a478d81ac1c77ea9602f0a8473b1b4b910f2aa2ccc
MD5 010ba8c45d0ed2a87363dfa43d55e2c0
BLAKE2b-256 6a9b76500383b04c903eeb8657feb8ed459145ba9bc1f570f819da2b25d8587a

See more details on using hashes here.

File details

Details for the file zrb_ollama-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: zrb_ollama-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 14.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.0 Linux/5.15.133.1-microsoft-standard-WSL2

File hashes

Hashes for zrb_ollama-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 723c0a1c6fcbb35f4b339b48d4bb08503cad6d5e39264f2fb889a734a2e61f02
MD5 22b279e4300820d1625d4d0fd2c0c1e9
BLAKE2b-256 51432763b0fa48f08930a9ab4818aec5c85eaa632447c085b0e65995a5fffc27

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page