Skip to main content

Zrb LLM plugin

Project description

Zrb Ollama

Zrb Ollama is a Pypi package that acts as LiteLLM's wrapper, allowing you to incorporate LLM into your workflow.

Zrb Ollama is a part of the Zrb ecosystem, but you can install it independently from Zrb.

Installation

You can install Zrb Ollama by invoking any of the following commands:

# From pypi
pip install zrb-ollama[chromadb,aws]

# From github
pip install git+https://github.com/state-alchemists/zrb-ollama.git@main

# From directory
pip install --use-feature=in-tree-build path/to/this/directory

By default, Zrb Ollama uses Ollama-based LLM. You can install Ollama by visiting the official website: https://ollama.ai/.

The default LLM is ollama/mistral:7b-instruct, while the default embedding LLM is ollama/nomic-embed-text.

You can change this by setting the model parameter on LLMTask or the create_rag function. See LiteLLM provider to use custom LLM.

Interactive Mode

Zrb Ollama provides a simple CLI command so you can interact with the LLM immediately. To interact with the LLM, you can invoke the following command.

zrb-ollama

To enhance zrb-ollama with tools, you can create a file named zrb_ollama_init.py and register the tools:

import os
from zrb_ollama import interactive_tools
from zrb_ollama.tools import create_rag, get_rag_documents


_CURRENT_DIR = os.path.dirname(__file__)

retrieve_john_titor_info = create_rag(
    tool_name='retrieve_john_titor_info',
    tool_description="Look for anything related to John Titor",
    documents=get_rag_documents(os.path.join(_CURRENT_DIR, "rag", "document")),
    vector_db_path=os.path.join(_CURRENT_DIR, "rag", "vector"),
    # reset_db=True,
)
interactive_tools.register(retrieve_john_titor_info)

Using LLMTask

Zrb Ollama provides a task named LLMTask, allowing you to create a Zrb Task with a custom model or tools.

import os

from zrb import CmdTask, StrInput, runner
from zrb_ollama import LLMTask, ToolFactory
from zrb_ollama.tools import (
    create_rag, get_rag_documents, query_internet
)

_CURRENT_DIR = os.path.dirname(__file__)
_RAG_DIR = os.path.join(_CURRENT_DIR, "rag")

rag = LLMTask(
    name="rag",
    inputs=[
        StrInput(name="user-prompt", default="How John Titor introduce himself?"),
    ],
    # model="gpt-4o",
    user_message="{{input.user_prompt}}",
    tools=[query_internet],
    tool_factories=[
        ToolFactory(
            create_rag,
            tool_name="retrieve_john_titor_info",
            tool_description="Look for anything related to John Titor",
            documents=get_rag_documents(os.path.join(_RAG_DIR, "document")),
            # model="text-embedding-ada-002",
            vector_db_path=os.path.join(_RAG_DIR, "vector"),
            # reset_db=True,
        )
    ],
)
runner.register(rag)

Assuming there is a file named john-titor.md inside rag/documents folder, you can invoke the Task by invoking the following command.

zrb rag

The LLM can browse the article or look for anything on the internet.

Using Agent

Under the hood, LLMTask makes use of Agent. You can create and interact with the agent programmatically as follows.

import asyncio
import os

from zrb import CmdTask, StrInput, runner
from zrb_ollama import agent
from zrb_ollama.tools import (
    create_rag, get_rag_documents, query_internet
)

_CURRENT_DIR = os.path.dirname(__file__)
_RAG_DIR = os.path.join(_CURRENT_DIR, "rag")


from zrb_ollama.tools import create_rag, query_internet


agent = Agent(
    model="gpt-4o",
    tools=[
        create_rag(
            tool_name="retrieve",
            tool_description="Look for anything related to John Titor"
            documents=get_rag_documents(os.path.join(_RAG_DIR, "document")),
            # model="text-embedding-ada-002",
            vector_db_path=os.path.join(_RAG_DIR, "vector"),
            # reset_db=True,
        ),
        query_internet,
    ]
)
result = asyncio.run(agent.add_user_message("How John Titor introduce himself?"))
print(result)

Configurations

You can set Zrb Ollama configurations using environment variables.

  • LLM_MODEL
    • Default: ollama/mistral:7b-instruct
    • Description: Default LLM model for LLMTask and interactive mode. See Lite LLM for valid values.
  • INTERACTIVE_ENABLED_TOOL_NAMES
    • Default: query_internet,open_web_page,run_shell_command
    • Description: Default tools enabled for interactive mode.
  • RAG_EMBEDDING_MODEL
    • Default: ollama/nomic-embed-text
    • Description: Default RAG embedding model for LLMTask and interactive mode. See Lite LLM for valid values.
  • RAG_CHUNK_SIZE
    • Default: 1024
    • Description: Default chunk size for RAG.
  • RAG_OVERLAP
    • Default: 128
    • Description: Default chunk overlap size for RAG.
  • RAG_MAX_RESULT_COUNT
    • Default: 5
    • Description: Default result count for RAG.
  • DEFAULT_SYSTEM_PROMPT
    • Default: You are a helpful assistant.
    • Description: Default system prompt.
  • DEFAULT_SYSTEM_MESSAGE_TEMPLATE
    • Default: See config.py
    • Description: Default template for LLM's system message. Should contains the following:
      • {system_prompt}
      • {response_format}
      • {function_signatures}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zrb_ollama-0.2.12.tar.gz (19.0 kB view details)

Uploaded Source

Built Distribution

zrb_ollama-0.2.12-py3-none-any.whl (23.2 kB view details)

Uploaded Python 3

File details

Details for the file zrb_ollama-0.2.12.tar.gz.

File metadata

  • Download URL: zrb_ollama-0.2.12.tar.gz
  • Upload date:
  • Size: 19.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.0 Linux/5.15.153.1-microsoft-standard-WSL2

File hashes

Hashes for zrb_ollama-0.2.12.tar.gz
Algorithm Hash digest
SHA256 a3267446f7d74aea289712934ac0ffa5a2025886ef09110b3422a24c45a0ade7
MD5 e8374b00c1d45fa60fc4079ef26bfe0b
BLAKE2b-256 00a4fa75c422f0619ce8c72bbe54a2388c8b7d25924cdc4a10e3e6d8ecbc3c80

See more details on using hashes here.

File details

Details for the file zrb_ollama-0.2.12-py3-none-any.whl.

File metadata

  • Download URL: zrb_ollama-0.2.12-py3-none-any.whl
  • Upload date:
  • Size: 23.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.0 Linux/5.15.153.1-microsoft-standard-WSL2

File hashes

Hashes for zrb_ollama-0.2.12-py3-none-any.whl
Algorithm Hash digest
SHA256 bf3e29b0801904b042dc5019bccfd226d1aa6b59d23a699659d3fa228466c6b6
MD5 abd956c71d26a04ddefe5e11fb2f3b06
BLAKE2b-256 14e6cfcaa197625f80e329ecdfb30db51e88f9f0efd3f62e49c814142264e8ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page