Skip to main content

Zrb LLM plugin

Project description

Zrb Ollama

Zrb Ollama is a Pypi package that acts as LiteLLM's wrapper, allowing you to incorporate LLM into your workflow.

Zrb Ollama is a part of the Zrb ecosystem, but you can install it independently from Zrb.

Installation

You can install Zrb Ollama by invoking any of the following commands:

# From pypi
pip install zrb-ollama[chromadb,aws]

# From github
pip install git+https://github.com/state-alchemists/zrb-ollama.git@main

# From directory
pip install --use-feature=in-tree-build path/to/this/directory

By default, Zrb Ollama uses Ollama-based LLM. You can install Ollama by visiting the official website: https://ollama.ai/.

The default LLM is ollama/mistral:7b-instruct, while the default embedding LLM is ollama/nomic-embed-text.

You can change this by setting the model parameter on LLMTask or the create_rag function. See LiteLLM provider to use custom LLM.

CLI Command

Zrb Ollama provides a simple CLI command so you can interact with the LLM immediately. The LLM has two tools:

  • query_internet
  • run_shell_command

To interact with the LLM, you can invoke the following command.

zrb-ollama

Using LLMTask

Zrb Ollama provides a task named LLMTask, allowing you to create a Zrb Task with a custom model or tools.

from zrb import runner, StrInput
from zrb_ollama import LLMTask
from zrb_ollama.tools import query_internet, create_rag

import os

_CURRENT_DIR = os.path.dirname(__file__)
with open(os.path.join(_CURRENT_DIR, "john-titor.md")) as f:
    john_titor_article = f.read()

ask = LLMTask(
    name="ask",
    inputs=[
        StrInput(name="user-prompt", default="How John Titor introduce himself?"),
    ],
    model="gpt-4o",
    user_message="{{input.user_prompt}}",
    tools=[
        create_rag(
            tool_name="retrieve",
            tool_description="Look for anything related to John Titor"
            documents=[john_titor_article],
            model="text-embedding-ada-002",
        ),
        query_internet,
    ]
)
runner.register(ask)

Assuming there is a file named john-titor.md, you can invoke the Task by invoking the following command.

zrb ask

The LLM can browse the article or look for anything on the internet.

Using Agent

Under the hood, LLMTask makes use of Agent. You can create and interact with the agent programmatically as follows.

from zrb_ollama import agent
from zrb_ollama.tools import create_rag, query_internet

import asyncio
import os

_CURRENT_DIR = os.path.dirname(__file__)
with open(os.path.join(_CURRENT_DIR, "john-titor.md")) as f:
    john_titor_article = f.read()


agent = Agent(
    model="gpt-4o",
    tools=[
        create_rag(
            tool_name="retrieve",
            tool_description="Look for anything related to John Titor"
            documents=[john_titor_article],
            model="text-embedding-ada-002",
        ),
        query_internet,
    ]
)
result = asyncio.run(agent.add_user_message("How John Titor introduce himself?"))
print(result)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zrb_ollama-0.2.3.tar.gz (14.6 kB view details)

Uploaded Source

Built Distribution

zrb_ollama-0.2.3-py3-none-any.whl (17.3 kB view details)

Uploaded Python 3

File details

Details for the file zrb_ollama-0.2.3.tar.gz.

File metadata

  • Download URL: zrb_ollama-0.2.3.tar.gz
  • Upload date:
  • Size: 14.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.0 Linux/5.15.133.1-microsoft-standard-WSL2

File hashes

Hashes for zrb_ollama-0.2.3.tar.gz
Algorithm Hash digest
SHA256 1635132b25668c62b0f0618995a34995d31933c0fc4158479d10031e92a7de27
MD5 966eab75187ecf7d8bfc9a7be9835140
BLAKE2b-256 eaef4912738ac48901ad12f5b2f33f35562d194e51d623c015550b3390d2ee5e

See more details on using hashes here.

File details

Details for the file zrb_ollama-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: zrb_ollama-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 17.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.0 Linux/5.15.133.1-microsoft-standard-WSL2

File hashes

Hashes for zrb_ollama-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d13d6652ba42b34af38f915caf74c54f904114b1a409d9dba1c17c1866c60470
MD5 13ed2959f573033bc6f7dada4651f493
BLAKE2b-256 8851e6d48323984e9a4ef18565f0f0c7ebee2099bd04b5b001d0160e7195e853

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page