Zrb LLM plugin
Project description
Zrb Ollama
Zrb Ollama is a Pypi package that acts as LiteLLM's wrapper, allowing you to incorporate LLM into your workflow.
Zrb Ollama is a part of the Zrb ecosystem, but you can install it independently from Zrb.
Installation
You can install Zrb Ollama by invoking any of the following commands:
# From pypi
pip install zrb-ollama[chromadb,aws]
# From github
pip install git+https://github.com/state-alchemists/zrb-ollama.git@main
# From directory
pip install --use-feature=in-tree-build path/to/this/directory
By default, Zrb Ollama uses Ollama-based LLM. You can install Ollama by visiting the official website: https://ollama.ai/
.
The default LLM is ollama/mistral:7b-instruct
, while the default embedding LLM is ollama/nomic-embed-text
.
You can change this by setting the model
parameter on LLMTask
or the create_rag
function. See LiteLLM provider to use custom LLM.
Interactive Mode
Zrb Ollama provides a simple CLI command so you can interact with the LLM immediately. To interact with the LLM, you can invoke the following command.
zrb-ollama
To enhance zrb-ollama
with tools, you can create a file named zrb_ollama_init.py
and register the tools:
import os
from zrb_ollama import interactive_tools
from zrb_ollama.tools import create_rag, get_rag_documents
_CURRENT_DIR = os.path.dirname(__file__)
retrieve_john_titor_info = create_rag(
tool_name='retrieve_john_titor_info',
tool_description="Look for anything related to John Titor",
documents=get_rag_documents(os.path.join(_CURRENT_DIR, "rag", "document")),
vector_db_path=os.path.join(_CURRENT_DIR, "rag", "vector"),
# reset_db=True,
)
interactive_tools.register(retrieve_john_titor_info)
Using LLMTask
Zrb Ollama provides a task named LLMTask
, allowing you to create a Zrb Task with a custom model or tools.
import os
from zrb import CmdTask, StrInput, runner
from zrb_ollama import LLMTask, ToolFactory
from zrb_ollama.tools import (
create_rag, get_rag_documents, query_internet
)
_CURRENT_DIR = os.path.dirname(__file__)
_RAG_DIR = os.path.join(_CURRENT_DIR, "rag")
rag = LLMTask(
name="rag",
inputs=[
StrInput(name="user-prompt", default="How John Titor introduce himself?"),
],
# model="gpt-4o",
user_message="{{input.user_prompt}}",
tools=[query_internet],
tool_factories=[
ToolFactory(
create_rag,
tool_name="retrieve_john_titor_info",
tool_description="Look for anything related to John Titor",
documents=get_rag_documents(os.path.join(_RAG_DIR, "document")),
# model="text-embedding-ada-002",
vector_db_path=os.path.join(_RAG_DIR, "vector"),
# reset_db=True,
)
],
)
runner.register(rag)
Assuming there is a file named john-titor.md
inside rag/documents
folder, you can invoke the Task by invoking the following command.
zrb rag
The LLM can browse the article or look for anything on the internet.
Using Agent
Under the hood, LLMTask makes use of Agent. You can create and interact with the agent programmatically as follows.
import asyncio
import os
from zrb import CmdTask, StrInput, runner
from zrb_ollama import agent
from zrb_ollama.tools import (
create_rag, get_rag_documents, query_internet
)
_CURRENT_DIR = os.path.dirname(__file__)
_RAG_DIR = os.path.join(_CURRENT_DIR, "rag")
from zrb_ollama.tools import create_rag, query_internet
agent = Agent(
model="gpt-4o",
tools=[
create_rag(
tool_name="retrieve",
tool_description="Look for anything related to John Titor"
documents=get_rag_documents(os.path.join(_RAG_DIR, "document")),
# model="text-embedding-ada-002",
vector_db_path=os.path.join(_RAG_DIR, "vector"),
# reset_db=True,
),
query_internet,
]
)
result = asyncio.run(agent.add_user_message("How John Titor introduce himself?"))
print(result)
Configurations
You can set Zrb Ollama configurations using environment variables.
LLM_MODEL
- Default:
ollama/mistral:7b-instruct
- Description: Default LLM model for
LLMTask
and interactive mode. See Lite LLM for valid values.
- Default:
INTERACTIVE_ENABLED_TOOL_NAMES
- Default:
query_internet,open_web_page,run_shell_command
- Description: Default tools enabled for interactive mode.
- Default:
RAG_EMBEDDING_MODEL
- Default:
ollama/nomic-embed-text
- Description: Default RAG embedding model for
LLMTask
and interactive mode. See Lite LLM for valid values.
- Default:
RAG_CHUNK_SIZE
- Default:
1024
- Description: Default chunk size for RAG.
- Default:
RAG_OVERLAP
- Default:
128
- Description: Default chunk overlap size for RAG.
- Default:
RAG_MAX_RESULT_COUNT
- Default:
5
- Description: Default result count for RAG.
- Default:
DEFAULT_SYSTEM_PROMPT
- Default:
You are a helpful assistant.
- Description: Default system prompt.
- Default:
DEFAULT_SYSTEM_MESSAGE_TEMPLATE
- Default: See config.py
- Description: Default template for LLM's system message. Should contains the following:
{system_prompt}
{response_format}
{function_signatures}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file zrb_ollama-0.2.7.tar.gz
.
File metadata
- Download URL: zrb_ollama-0.2.7.tar.gz
- Upload date:
- Size: 17.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.0 Linux/5.15.153.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09aec27ce4cb347cda0c357c5d7c8c88f99a304cea81999765e4dabe4abade03 |
|
MD5 | a36f1d6420c1a9184ff6580773740cfb |
|
BLAKE2b-256 | b4c12717850aad00bd89632cdea90bb02b4e12a52860dff75763f9d685ded43a |
File details
Details for the file zrb_ollama-0.2.7-py3-none-any.whl
.
File metadata
- Download URL: zrb_ollama-0.2.7-py3-none-any.whl
- Upload date:
- Size: 22.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.0 Linux/5.15.153.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 01bc17c726b07b4409e5ddcab48027031834befe32d662b51c392427a123e2d1 |
|
MD5 | c9678ad90f6b17469dac97e77367d6c6 |
|
BLAKE2b-256 | dd88cdff7658fd26f1ed4e75f5008233e12dd06820624ae73a66319b57e1a3d5 |