Skip to main content

Python implementation of Dropbox's realistic password strength estimator, zxcvbn

Project description

Build Status

zxcvbn-python

Python implementation of Dropbox’s realistic password strength estimator. The original library, written for JavaScript, can be found here.

While there may be other Python ports available, this one is the most up to date and is recommended by the original developers of zxcvbn at this time.

Tested in Python versions 2.6-2.7, 3.3-3.6

Installation

Install the package using pip: pip install zxcvbn-python

Usage

Pass a password as the first parameter, and a list of user-provided inputs as the user_inputs parameter (optional).

from zxcvbn import zxcvbn

results = zxcvbn('JohnSmith123', user_inputs=['John', 'Smith'])

print(results)

Output:

{
    'password': 'JohnSmith123',
    'score': 2,
    'guesses': 2567800,
    'guesses_log10': 6.409561194521849,
    'calc_time': datetime.timedelta(0, 0, 5204)
    'feedback': {
        'warning': '',
        'suggestions': [
            'Add another word or two. Uncommon words are better.',
            "Capitalization doesn't help very much"
        ]
    },
    'crack_times_display': {
        'offline_fast_hashing_1e10_per_second': 'less than a second'
        'offline_slow_hashing_1e4_per_second': '4 minutes',
        'online_no_throttling_10_per_second': '3 days',
        'online_throttling_100_per_hour': '3 years',
    },
    'crack_times_seconds': {
        'offline_fast_hashing_1e10_per_second': 0.00025678,
        'offline_slow_hashing_1e4_per_second': 256.78
        'online_no_throttling_10_per_second': 256780.0,
        'online_throttling_100_per_hour': 92440800.0,
    },
    'sequence': [{
        'matched_word': 'john',
        'rank': 2,
        'pattern': 'dictionary',
        'reversed': False,
        'token': 'John',
        'l33t': False,
        'uppercase_variations': 2,
        'i': 0,
        'guesses': 50,
        'l33t_variations': 1,
        'dictionary_name': 'male_names',
        'base_guesses': 2,
        'guesses_log10': 1.6989700043360185,
        'j': 3
    }, {
        'matched_word': 'smith123',
        'rank': 12789,
        'pattern': 'dictionary',
        'reversed': False,
        'token': 'Smith123',
        'l33t': False,
        'uppercase_variations': 2,
        'i': 4,
        'guesses': 25578,
        'l33t_variations': 1,
        'dictionary_name': 'passwords',
        'base_guesses': 12789,
        'guesses_log10': 4.407866583030775,
        'j': 11
    }],
}

Custom Ranked Dictionaries

In order to support more languages or just add password dictionaries of your own, there is a helper function you may use.

from zxcvbn.matching import add_frequency_lists

add_frequency_lists({
    'my_list': ['foo', 'bar'],
    'another_list': ['baz']
})

These lists will be added to the current ones, but you can also overwrite the current ones if you wish. The lists you add should be in order of how common the word is used with the most common words appearing first.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zxcvbn-python-4.4.13.tar.gz (404.7 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page