Skip to main content

EOS -- A HEP program for Flavor Observables

Project description

PyPi version Build Status Build Status Discord

EOS logo

EOS - A software for Flavor Physics Phenomenology

EOS is a software package that addresses several use cases in the field of high-energy flavor physics:

  1. theory predictions of and uncertainty estimation for flavor observables within the Standard Model or within the Weak Effective Theory;
  2. Bayesian parameter inference from both experimental and theoretical constraints; and
  3. Monte Carlo simulation of pseudo events for flavor processes.

An up-to-date list of publications that use EOS can be found here.

EOS is written in C++20 and designed to be used through its Python 3 interface, ideally within a Jupyter notebook environment. It depends on as a small set of external software:

  • the GNU Scientific Library (libgsl),
  • a subset of the BOOST C++ libraries,
  • the Python 3 interpreter.

For details on these dependencies we refer to the online documentation.

Installation

EOS supports several methods of installation. For Linux users, the recommended method is installation via PyPI:

pip3 install eoshep

Development versions tracking the master branch are also available via PyPi:

pip3 install --pre eoshep

For instructions on how to build and install EOS on your computer please have a look at the online documentation.

Contact

If you want to report an error or file a request, please file an issue here. For additional information, please contact any of the main authors, e.g. via our Discord server.

Authors and Contributors

The main authors are:

with further code contributions by:

  • Marzia Bordone,
  • Thomas Blake,
  • Lorenz Gaertner,
  • Elena Graverini,
  • Stephan Jahn,
  • Ahmet Kokulu,
  • Viktor Kuschke,
  • Stephan Kürten,
  • Philip Lüghausen,
  • Bastian Müller,
  • Filip Novak,
  • Stefanie Reichert,
  • Eduardo Romero,
  • Rafael Silva Coutinho,
  • Ismo Tojiala,
  • K. Keri Vos,
  • Christian Wacker.

We would like to extend our thanks to the following people whose input and support were most helpful in either the development or the maintenance of EOS:

  • Gudrun Hiller
  • Gino Isidori
  • David Leverton
  • Thomas Mannel
  • Ciaran McCreesh
  • Hideki Miyake
  • Konstantinos Petridis
  • Nicola Serra
  • Alexander Shires

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

eoshep-1.0.17-cp313-cp313-manylinux_2_28_x86_64.whl (82.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

eoshep-1.0.17-cp313-cp313-manylinux_2_28_aarch64.whl (76.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

eoshep-1.0.17-cp312-cp312-manylinux_2_28_x86_64.whl (82.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

eoshep-1.0.17-cp312-cp312-manylinux_2_28_aarch64.whl (76.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

eoshep-1.0.17-cp311-cp311-manylinux_2_28_x86_64.whl (82.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

eoshep-1.0.17-cp311-cp311-manylinux_2_28_aarch64.whl (76.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

eoshep-1.0.17-cp310-cp310-manylinux_2_28_x86_64.whl (82.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

eoshep-1.0.17-cp310-cp310-manylinux_2_28_aarch64.whl (76.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

File details

Details for the file eoshep-1.0.17-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.17-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8a595f6439bdcfb6d62b849dd347b67c8c62e53954cea6507281c2584e672852
MD5 fcd9b5500cc53e54755fc502ee78e3b0
BLAKE2b-256 eda8c69e2bd7b41038cc765ba355f1fd5af263923bfcc7e1cbe5e0320d89ab15

See more details on using hashes here.

File details

Details for the file eoshep-1.0.17-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.17-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8013a774952ab9d2f0c799d0c0ed362fce2d49af356c925fa4888aa034753465
MD5 a22d5c4d30140ad35aa0d5304f050090
BLAKE2b-256 5560fbea7f41fc59b7cbde55847c1198d3c10f872ea3e02e02479c6a4dddfe56

See more details on using hashes here.

File details

Details for the file eoshep-1.0.17-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.17-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 47a329bfa3baee23770376f6dff128cedbb64b59eb04187910bc4f280c177d23
MD5 5c00d430f909b4c1c0e0834eaf96b0cc
BLAKE2b-256 9b4c1df64672e751a43a17bc8993dbe77e3bde2de24b4088e2ee36019373857d

See more details on using hashes here.

File details

Details for the file eoshep-1.0.17-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.17-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f4803cf124ce2abd5f97bd989698250548e4696a13080b96f219afbf7b89e24e
MD5 748b486bca6f70ba7865f904bec59f25
BLAKE2b-256 828ff9ef32916e5a5bb9ed36e734bd1c3f65854e7d77b52309192e57731f8e7b

See more details on using hashes here.

File details

Details for the file eoshep-1.0.17-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.17-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 22b13008192c90bde20dc181fa2b61e43e095debc459461dc636a2e75aac86cd
MD5 2566d9f4d514476c55c4cab44a134eae
BLAKE2b-256 5dc74f6d74aa88173e60e8e9f417f3f14a8bb83cf76d4ddd24acd61c3069abbc

See more details on using hashes here.

File details

Details for the file eoshep-1.0.17-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.17-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 34f5708e1fae585521ec0cd3ed22643fd69c1e2bd9a96f7881ebdf33928900f7
MD5 db21fb228a7325db32e4fada8577f7c9
BLAKE2b-256 7f9cdfb6c675565736ec1b39f9df116b1a067168e9edd5d228bc2bfbf6c388ac

See more details on using hashes here.

File details

Details for the file eoshep-1.0.17-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.17-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a645d7bbeae751df7f90da6c643d6463b9f8feb20bd826648b8c81a1ca52980c
MD5 39420de0a4b4e273ff83d94567a7aed4
BLAKE2b-256 0fba8a806bdaecb845afdcd344f34f114b138d3550f271ed8ec7747e38a7efc2

See more details on using hashes here.

File details

Details for the file eoshep-1.0.17-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.17-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c7d092e32d0c69e0e5d0a31990fcd7ab65b6503163010de1593dccabe13b07cf
MD5 5f3fd94a55fc749f8b5ba86fd61d8264
BLAKE2b-256 4d660487f6ec6feefc6dc64d3ace825b03ddd68e22c54a5c1f2775963b153d70

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page