Skip to main content

EOS -- A HEP program for Flavor Observables

Project description

PyPi version Build Status Build Status Discord

EOS logo

EOS - A software for Flavor Physics Phenomenology

EOS is a software package that addresses several use cases in the field of high-energy flavor physics:

  1. theory predictions of and uncertainty estimation for flavor observables within the Standard Model or within the Weak Effective Theory;
  2. Bayesian parameter inference from both experimental and theoretical constraints; and
  3. Monte Carlo simulation of pseudo events for flavor processes.

An up-to-date list of publications that use EOS can be found here.

EOS is written in C++20 and designed to be used through its Python 3 interface, ideally within a Jupyter notebook environment. It depends on as a small set of external software:

  • the GNU Scientific Library (libgsl),
  • a subset of the BOOST C++ libraries,
  • the Python 3 interpreter.

For details on these dependencies we refer to the online documentation.

Installation

EOS supports several methods of installation. For Linux users, the recommended method is installation via PyPI:

pip3 install eoshep

Development versions tracking the master branch are also available via PyPi:

pip3 install --pre eoshep

For instructions on how to build and install EOS on your computer please have a look at the online documentation.

Contact

If you want to report an error or file a request, please file an issue here. For additional information, please contact any of the main authors, e.g. via our Discord server.

Authors and Contributors

The main authors are:

with further code contributions by:

  • Marzia Bordone,
  • Thomas Blake,
  • Lorenz Gaertner,
  • Elena Graverini,
  • Stephan Jahn,
  • Ahmet Kokulu,
  • Viktor Kuschke,
  • Stephan Kürten,
  • Philip Lüghausen,
  • Bastian Müller,
  • Filip Novak,
  • Stefanie Reichert,
  • Eduardo Romero,
  • Rafael Silva Coutinho,
  • Ismo Tojiala,
  • K. Keri Vos,
  • Christian Wacker.

We would like to extend our thanks to the following people whose input and support were most helpful in either the development or the maintenance of EOS:

  • Gudrun Hiller
  • Gino Isidori
  • David Leverton
  • Thomas Mannel
  • Ciaran McCreesh
  • Hideki Miyake
  • Konstantinos Petridis
  • Nicola Serra
  • Alexander Shires

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

eoshep-1.0.16-cp313-cp313-manylinux_2_28_x86_64.whl (80.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

eoshep-1.0.16-cp313-cp313-manylinux_2_28_aarch64.whl (74.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

eoshep-1.0.16-cp312-cp312-manylinux_2_28_x86_64.whl (80.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

eoshep-1.0.16-cp312-cp312-manylinux_2_28_aarch64.whl (74.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

eoshep-1.0.16-cp311-cp311-manylinux_2_28_x86_64.whl (80.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

eoshep-1.0.16-cp311-cp311-manylinux_2_28_aarch64.whl (74.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

eoshep-1.0.16-cp310-cp310-manylinux_2_28_x86_64.whl (80.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

eoshep-1.0.16-cp310-cp310-manylinux_2_28_aarch64.whl (74.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

File details

Details for the file eoshep-1.0.16-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.16-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 62ba686d55044d7d31842fea4eeec5fd9402000b2299ddfa02d14ef649b7d755
MD5 01c38de47733d7b1c15676b6141a5b74
BLAKE2b-256 6c9520408fc373796e2c973bd7f4d3e6a9b23870feffdda69fe1d2f320afbb9b

See more details on using hashes here.

File details

Details for the file eoshep-1.0.16-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.16-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 21708704e7d6c61ecc74b1cd4bd021772e7d040061a75f80a54b0b0305511264
MD5 2373b2a62dcc1f0be2073531dd1f1d99
BLAKE2b-256 5d636211ee2e1cf31a67cd1d917b44fc0424c1f019581587e9a531aa1e048ca2

See more details on using hashes here.

File details

Details for the file eoshep-1.0.16-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.16-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6bfc526b06657d99b905e03a84c75af820dcd45422db5abc977a55e21eb9ea26
MD5 29758f29c9557ae6b354359439424b2e
BLAKE2b-256 4e8527f361e1f2c133ad25d974e065f23e34516b2a7148d10f7899e284a380e1

See more details on using hashes here.

File details

Details for the file eoshep-1.0.16-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.16-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f0faafb18aef0afd77e57d18f85a9f7f64440f5063932e43274dba6972050779
MD5 091444de552de7fd22a5390e42d191f9
BLAKE2b-256 6aaddde94e0af4ba0d2d206b8f54e90e0811840faf0527c0135dafadfa471584

See more details on using hashes here.

File details

Details for the file eoshep-1.0.16-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.16-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 47a8f7c660759ff840c4fb4b435dc6b7f285bdf248ffe9b3fe49b9aa339d4618
MD5 b5d088db512dd220d2f3a42815b46cca
BLAKE2b-256 742745dfb81abcaf3fbe217e59cd4174b88eab48ac3fa1b10e42190d97bfa036

See more details on using hashes here.

File details

Details for the file eoshep-1.0.16-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.16-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5ba10220612076b058ff626c2a530601380ce93c3aef2a6f2723b1910b6fdf99
MD5 306dcb75bf0c1a1b2982f3097d878e10
BLAKE2b-256 859e1d050cbc64eb7caabd3643aaa1a03b9b9667f9be3cf8e57e494832f5cc2a

See more details on using hashes here.

File details

Details for the file eoshep-1.0.16-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.16-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6e059d6bc04a8079bcf4760cbbbef7aec6943b0befecee37fd0103427e0aaeb9
MD5 f795647c1025405e49cb9d7df0f90fb7
BLAKE2b-256 b1a330b3d2c76e201cd16c50ee76a7f72b633ce4c5fcf3e92ecca4d7d8390329

See more details on using hashes here.

File details

Details for the file eoshep-1.0.16-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.16-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 05f4d287e122638d1d7af1cf6de6f1ffb45341c44fb37dd34c406f21c73876cb
MD5 9c44f759db9981c2472fb9f69eb5f27a
BLAKE2b-256 1726919b79134b2217e69f1c72a2016e8d8824d9a72847381dfe1bc2ea373d13

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page