Skip to main content

EOS -- A HEP program for Flavor Observables

Project description

PyPi version Build Status Build Status Discord

EOS logo

EOS - A software for Flavor Physics Phenomenology

EOS is a software package that addresses several use cases in the field of high-energy flavor physics:

  1. theory predictions of and uncertainty estimation for flavor observables within the Standard Model or within the Weak Effective Theory;
  2. Bayesian parameter inference from both experimental and theoretical constraints; and
  3. Monte Carlo simulation of pseudo events for flavor processes.

An up-to-date list of publications that use EOS can be found here.

EOS is written in C++20 and designed to be used through its Python 3 interface, ideally within a Jupyter notebook environment. It depends on as a small set of external software:

  • the GNU Scientific Library (libgsl),
  • a subset of the BOOST C++ libraries,
  • the Python 3 interpreter.

For details on these dependencies we refer to the online documentation.

Installation

EOS supports several methods of installation. For Linux users, the recommended method is installation via PyPI:

pip3 install eoshep

Development versions tracking the master branch are also available via PyPi:

pip3 install --pre eoshep

For instructions on how to build and install EOS on your computer please have a look at the online documentation.

Contact

If you want to report an error or file a request, please file an issue here. For additional information, please contact any of the main authors, e.g. via our Discord server.

Authors and Contributors

The main authors are:

with further code contributions by:

  • Marzia Bordone,
  • Thomas Blake,
  • Lorenz Gaertner,
  • Elena Graverini,
  • Stephan Jahn,
  • Ahmet Kokulu,
  • Viktor Kuschke,
  • Stephan Kürten,
  • Philip Lüghausen,
  • Bastian Müller,
  • Filip Novak,
  • Stefanie Reichert,
  • Eduardo Romero,
  • Rafael Silva Coutinho,
  • Ismo Tojiala,
  • K. Keri Vos,
  • Christian Wacker.

We would like to extend our thanks to the following people whose input and support were most helpful in either the development or the maintenance of EOS:

  • Gudrun Hiller
  • Gino Isidori
  • David Leverton
  • Thomas Mannel
  • Ciaran McCreesh
  • Hideki Miyake
  • Konstantinos Petridis
  • Nicola Serra
  • Alexander Shires

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

eoshep-1.0.19-cp314-cp314-manylinux_2_28_x86_64.whl (83.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ x86-64

eoshep-1.0.19-cp314-cp314-manylinux_2_28_aarch64.whl (77.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ ARM64

eoshep-1.0.19-cp313-cp313-manylinux_2_28_x86_64.whl (83.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

eoshep-1.0.19-cp313-cp313-manylinux_2_28_aarch64.whl (77.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

eoshep-1.0.19-cp312-cp312-manylinux_2_28_x86_64.whl (83.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

eoshep-1.0.19-cp312-cp312-manylinux_2_28_aarch64.whl (77.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

eoshep-1.0.19-cp311-cp311-manylinux_2_28_x86_64.whl (83.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

eoshep-1.0.19-cp311-cp311-manylinux_2_28_aarch64.whl (77.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

eoshep-1.0.19-cp310-cp310-manylinux_2_28_x86_64.whl (83.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

eoshep-1.0.19-cp310-cp310-manylinux_2_28_aarch64.whl (77.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

File details

Details for the file eoshep-1.0.19-cp314-cp314-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp314-cp314-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dcaeafe8273d0af52018f4a8fd2ca55ff90c0a95d8fa8d6597a52db2a94c001a
MD5 06ddf559799e1a6facfd08ceb6033410
BLAKE2b-256 7a265854292443b50a38f5e4d438daeac12ef2c2808983674ee29a8db037aa07

See more details on using hashes here.

File details

Details for the file eoshep-1.0.19-cp314-cp314-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp314-cp314-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c25ffa01e8f0ce8233f80956c219d0a6979dd54f4e7933f5e560935a559d95c8
MD5 2cda6b8dc8f31a0cc5556c9f71afba41
BLAKE2b-256 ec2a0e7883dcb21f37f24ffb9b802aaefc63468002a5c87965ba66d2fe08eefc

See more details on using hashes here.

File details

Details for the file eoshep-1.0.19-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fac9d6276547f56899216f4d43230d704144fdc1f101b14f0d870aca48c82824
MD5 eb8a3c8cd29c2615a654b626af0e0e30
BLAKE2b-256 a2e965bba0c8303b02cf94921953b6d34354c307cb3ef9a9e2f43674950aa711

See more details on using hashes here.

File details

Details for the file eoshep-1.0.19-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 23ca2130e29c122e664ef85495ab4ac388be0127fc1ab4f2b783eeb69842f649
MD5 85cd67d0dceac0cf960e950f496364dc
BLAKE2b-256 3d447d4e35826277eed1040635a8e062edf2a3454648914f7ea56140a846f758

See more details on using hashes here.

File details

Details for the file eoshep-1.0.19-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 48d566223a05ad8a7364f09ab9e7680a5cbb4d743044a3bb98ef05004d28f0fe
MD5 9e5c204166989b2e3c4dc4aee0df622b
BLAKE2b-256 677f6205503a97f5b036547076ea6423eb8f2d047129b112998dd2bb1c3dbe09

See more details on using hashes here.

File details

Details for the file eoshep-1.0.19-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d83370505429e898bbfa4ca4c912c057c006c1ff275c4ab62d77fda0b8d680da
MD5 433f073a14a7a50fcfe9dc4f96efc791
BLAKE2b-256 13c4306929091157227180be86ac27f807751783323826701b6d9de4d7d78aa0

See more details on using hashes here.

File details

Details for the file eoshep-1.0.19-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 51a7b0df65d41c3c0bb4b27f42ede37343064d4f3e381ff29df1422f8199274e
MD5 d629370551c2a3ef412182217d46949a
BLAKE2b-256 bfcfe1be1d3a28ba87f0f1f64ea57356d5b5834edd4a51027601b151b43b8940

See more details on using hashes here.

File details

Details for the file eoshep-1.0.19-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 47289a2d5a7ba1f67f83f02561c8eb7ca388ce3369aa07fb4bf3447e7c110b12
MD5 27f6cacf9337ffd27689c98b39161978
BLAKE2b-256 c8471bfbf6d1c9e162b9969daaa82afb3ddf3aacf6b0ece52d67a32e06a873ba

See more details on using hashes here.

File details

Details for the file eoshep-1.0.19-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 599365a96dae79b4a6564be6a81c89bcf7eccfb32b5e1b5765ee1d708d181adb
MD5 3aa889f66cb22fdd445c984c39befcf8
BLAKE2b-256 c2cdea50b5e075847b6500eca6f072c84390c1a9a6c60134d8855cade38ba1fe

See more details on using hashes here.

File details

Details for the file eoshep-1.0.19-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for eoshep-1.0.19-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 afd5dcd7a24b8cbedad081b7b39cd7ba8e81cc4a6cb4133a06c37cc034c97985
MD5 92a7faa116f3b37a736728fd40987321
BLAKE2b-256 0a6251ef40b8f5cec600340e3a85433522603e91134a7cdc82c1df0356c6d75a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page