API for graphs and tasks in Ewoks
Project description
ewokscore
ewokscore provides an API to define workflows and implement tasks in ewoks.
Install
pip install ewokscore[test]
Test
pytest --pyargs ewokscore.tests
Getting started
from ewokscore import Task
from ewokscore import execute_graph
# Implement a workflow task
class SumTask(
Task, input_names=["a"], optional_input_names=["b"], output_names=["result"]
):
def run(self):
result = self.inputs.a
if self.inputs.b:
result += self.inputs.b
self.outputs.result = result
# Define a workflow with default inputs
graph = {"id": "testworkflow", "schema_version": "1.1"}
nodes = [
{
"id": "task1",
"task_type": "class",
"task_identifier": "__main__.SumTask",
"default_inputs": [{"name": "a", "value": 1}],
},
{
"id": "task2",
"task_type": "class",
"task_identifier": "__main__.SumTask",
"default_inputs": [{"name": "b", "value": 1}],
},
{
"id": "task3",
"task_type": "class",
"task_identifier": "__main__.SumTask",
"default_inputs": [{"name": "b", "value": 1}],
},
]
links = [
{
"source": "task1",
"target": "task2",
"data_mapping": [{"source_output": "result", "target_input": "a"}],
},
{
"source": "task2",
"target": "task3",
"data_mapping": [{"source_output": "result", "target_input": "a"}],
},
]
workflow = {"graph": graph, "nodes": nodes, "links": links}
# Define task inputs
inputs = [{"id": "task1", "name": "a", "value": 10}]
# Execute a workflow (use a proper Ewoks task scheduler in production)
varinfo = {"root_uri": "/tmp/myresults"} # optionally save all task outputs
result = execute_graph(workflow, varinfo=varinfo, inputs=inputs)
print(result)
Documentation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ewokscore-2.0.0.tar.gz
(88.3 kB
view details)
File details
Details for the file ewokscore-2.0.0.tar.gz
.
File metadata
- Download URL: ewokscore-2.0.0.tar.gz
- Upload date:
- Size: 88.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.12.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
385b151c701a3a20ff56793b27b9e1263e4cc5bc8ff33efcbc6e8de027f142b1
|
|
MD5 |
a7ea86b0ac4b4ca55f11f51188d7cd50
|
|
BLAKE2b-256 |
3ede7e5e327982d8260e682dccb92b91f2be8feb7db8e6ef6c9148f336a836c5
|