Skip to main content

InfluxDB access via IPython

Project description

https://circleci.com/gh/bonitoo-io/ipython-flux.svg?style=svg
Author:

Robert Hajek, Bonitoo.io

Introduces a %flux (or %%flux) magic.

Connect to a InfluxDB and run Flux commands within IPython or IPython Notebook.

screenshot of ipython-flux in the Notebook

Examples

In [1]: %load_ext flux

In [2]: %%flux http://localhost:9999 --token "my-token" --org my-org
   ...: from(bucket: "apm_metricset")
   ...:   |> range(start: v.timeRangeStart, stop: v.timeRangeStop)
   ...:   |> filter(fn: (r) => r["_measurement"] == "apm_metricset")
   ...:   |> filter(fn: (r) => r["_field"] == "samples_system.process.cpu.total.norm.pct")
   ...:
Out[2]: ...

After the first connection, connect info can be omitted:

In [3]: %flux
   ...: from(bucket: "apm_metricset")
   ...:   |> range(start: v.timeRangeStart, stop: v.timeRangeStop)
   ...:   |> filter(fn: (r) => r["_measurement"] == "apm_metricset")
   ...:   |> filter(fn: (r) => r["_field"] == "samples_system.process.cpu.total.norm.pct")

Out[8]: ...

If no connect string is supplied, %flux will use environment variables INFLUXDB_V2_URL, INFLUXDB_V2_ORG, INFLUXDB_V2_TOKEN to create connection into InfluxDB.

Ordinary IPython assignment works for single-line %flux queries:

In [12]: result = %flux from(bucket: "my-bucket")  |> range(start: 0)

The << operator captures query results in a local variable, and can be used in multi-line %%flux:

In [19]: %%flux my_dataset <<
    ...: from(bucket: "my-bucket")
    ...: |> range(start: -30m)
    ...: |> filter(fn: (r) => r["_measurement"] == "cpu")
    ...: |> filter(fn: (r) => r["_field"] == "usage_idle" or r["_field"] == "usage_system" or r["_field"] == "usage_user")
    ...: |> filter(fn: (r) => r["cpu"] == "cpu-total")
    ...: |> drop(columns: ["_start", "_stop", "_result", "_measurement", "table", "_result"])
    ...: |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")

The result of the Flux command is automatically converted into Pandas dataframe. It is often useful to use Flux functions fieldsAsCol() or pivot() to convert data containing multiple timeseries into one dataset.

Persist dataframe

The --persist argument, with the name of a DataFrame object in memory will create a measurement in the database from the named DataFrame.

In [1]: %flux --persist <data_frame_variable_name> --bucket my-bucket --measurement <new measurement name> --tags tag_column1,tag_column2

Options

-l / --connections

List all active connections

-t / --token

InfluxDB token

-o / --org

InfluxDB org

--timeout

InfluxDB query timeout in milliseconds (default timeout is 10_000 ms)

-f / --file <path>

Run Flux from file at this path

-x / --close <session-name>

Close named connection

Persist options

-p / --persist

Create a measurement in the database from the named DataFrame

-b / --bucket

target bucket name

-T / --tags

comma separated list of columns that will be stored as tags, rest of columns will be stored as fields

-m / --measurement

optional, target measurement name, if not specified measurement is taken from dataframe name

Installing

Install the lastest release with:

pip install ipython-flux

or download from https://github.com/bonitoo-io/ipython-flux and:

cd ipython-flux
sudo python setup.py install

Enable IPython flux magic extension in Jupyter notebook using

In [1]: %load_ext flux

Development

https://github.com/bonitoo-io/ipython-flux

News

0.0.6

Release date: 06-11-2022

  • #5 - Fix setup.py formatting

0.0.5

Release date: 25-03-2022

  • #2 - Add connection timeout

  • #3 - Change default InfluxDB port from 9999 to 8086, update dependencies

0.0.4

Release date: 18-08-2020

  • #1: Fixed token argument starts with “-”

0.0.3

Release date: 12-08-2020

  • Updated tox.ini and requirement dependencies

0.0.2

Release date: 6-08-2020

  • Fixed connection creation from os enviroment variables

  • Added persist dataframe into InfluxDB

0.0.1

Release date: 21-07-2020

  • Initial release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ipython-flux-0.0.6.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

ipython_flux-0.0.6-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file ipython-flux-0.0.6.tar.gz.

File metadata

  • Download URL: ipython-flux-0.0.6.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for ipython-flux-0.0.6.tar.gz
Algorithm Hash digest
SHA256 113d0281e92a4ea45e57c031105f90526d5afe6798be2db205ba96228a7e5657
MD5 40e722040f2d42836caab72d5646036d
BLAKE2b-256 82ad0f527dcac184ae70d158c2b62d886e00d4390a325816c555408c98342440

See more details on using hashes here.

File details

Details for the file ipython_flux-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: ipython_flux-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for ipython_flux-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 1d6b18530f99a5f7293f9cc609780a3df1ae815a0ec0c7ad7d6e108d97fb5983
MD5 1ea7c9690b4aa81b509cb973485a9f4a
BLAKE2b-256 47644b82a4b60682e73d07e9ffc2b3b2e973475299b169d0356d556d29cd0974

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page