Skip to main content

Finite volume discretizations for Python

Project description

pyfvm

PyPi Version PyPI pyversions GitHub stars PyPi downloads

Discord

Creating finite volume equation systems with ease.

pyfvm provides everything that is needed for setting up finite volume equation systems. The user needs to specify the finite volume formulation in a configuration file, and pyfvm will create the matrix/right-hand side or the nonlinear system for it. This package is for everyone who wants to quickly construct FVM systems.

Examples

Linear equation systems

pyfvm works by specifying the residuals, so for solving Poisson's equation with Dirichlet boundary conditions, simply do

import meshplex
import meshzoo
import numpy as np
from scipy.sparse import linalg

import pyfvm
from pyfvm.form_language import Boundary, dS, dV, integrate, n_dot_grad


class Poisson:
    def apply(self, u):
        return integrate(lambda x: -n_dot_grad(u(x)), dS) - integrate(lambda x: 1.0, dV)

    def dirichlet(self, u):
        return [(lambda x: u(x) - 0.0, Boundary())]


# Create mesh using meshzoo
vertices, cells = meshzoo.rectangle_tri(
    np.linspace(0.0, 2.0, 401), np.linspace(0.0, 1.0, 201)
)
mesh = meshplex.Mesh(vertices, cells)

matrix, rhs = pyfvm.discretize_linear(Poisson(), mesh)

u = linalg.spsolve(matrix, rhs)

mesh.write("out.vtk", point_data={"u": u})

This example uses meshzoo for creating a simple mesh, but anything else that provides vertices and cells works as well. For example, reading from a wide variety of mesh files is supported (via meshio):

mesh = meshplex.read("pacman.e")

Likewise, PyAMG is a much faster solver for this problem

import pyamg

ml = pyamg.smoothed_aggregation_solver(matrix)
u = ml.solve(rhs, tol=1e-10)

More examples are contained in the examples directory.

Nonlinear equation systems

Nonlinear systems are treated almost equally; only the discretization and obviously the solver call is different. For Bratu's problem:

import pyfvm
from pyfvm.form_language import *
import meshzoo
import numpy as np
from sympy import exp
import meshplex


class Bratu:
    def apply(self, u):
        return integrate(lambda x: -n_dot_grad(u(x)), dS) - integrate(
            lambda x: 2.0 * exp(u(x)), dV
        )

    def dirichlet(self, u):
        return [(u, Boundary())]


vertices, cells = meshzoo.rectangle_tri(
    np.linspace(0.0, 2.0, 101), np.linspace(0.0, 1.0, 51)
)
mesh = meshplex.Mesh(vertices, cells)

f, jacobian = pyfvm.discretize(Bratu(), mesh)


def jacobian_solver(u0, rhs):
    from scipy.sparse import linalg

    jac = jacobian.get_linear_operator(u0)
    return linalg.spsolve(jac, rhs)


u0 = np.zeros(len(vertices))
u = pyfvm.newton(f.eval, jacobian_solver, u0)

mesh.write("out.vtk", point_data={"u": u})

Note that the Jacobian is computed symbolically from the Bratu class.

Instead of pyfvm.newton, you can use any solver that accepts the residual computation f.eval, e.g.,

import scipy.optimize

u = scipy.optimize.newton_krylov(f.eval, u0)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pyfvm-0.4.8-py3-none-any.whl (32.9 kB view details)

Uploaded Python 3

File details

Details for the file pyfvm-0.4.8-py3-none-any.whl.

File metadata

  • Download URL: pyfvm-0.4.8-py3-none-any.whl
  • Upload date:
  • Size: 32.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfvm-0.4.8-py3-none-any.whl
Algorithm Hash digest
SHA256 f97b961dbdb8a2426816ea77470145fbd1b1ff4ee80ca8f6abfdb72cd9d8d08b
MD5 b8964aa6f584752d76ed47865803780e
BLAKE2b-256 a9b43bb4220f63a7005d9c164839678721a9e11e99dbebaddf6293f1dcfbd611

See more details on using hashes here.

Provenance

The following attestation bundles were made for pyfvm-0.4.8-py3-none-any.whl:

Publisher: release.yml on meshpro/pyfvm-dev

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page