Packaged version of the Yolov5 object detector
Project description
packaged ultralytics/yolov5
pip install yolo5
Overview
You can finally install YOLOv5 object detector using pip and integrate into your project easily.
Installation
- Install yolov5 using pip
(for Python >=3.7)
:
pip install yolo5
- Install yolov5 using pip
(for Python 3.6)
:
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5
Basic Usage
import yolov5
# model
model = yolov5.load('yolov5s')
# image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# inference
results = model(img)
# inference with larger input size
results = model(img, size=1280)
# inference with test time augmentation
results = model(img, augment=True)
# show results
results.show()
# save results
results.save(save_dir='results/')
Alternative Usage
from yolov5 import YOLOv5
# set model params
model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path
device = "cuda" # or "cpu"
# init yolov5 model
yolov5 = YOLOv5(model_path, device)
# load images
image1 = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
image2 = 'https://github.com/ultralytics/yolov5/blob/master/data/images/bus.jpg'
# perform inference
results = yolov5.predict(image1)
# perform inference with larger input size
results = yolov5.predict(image1, size=1280)
# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)
# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)
# show detection bounding boxes on image
results.show()
# save results into "results/" folder
results.save(save_dir='results/')
Scripts
You can call yolo_train, yolo_detect and yolo_test commands after installing the package via pip
:
Training
Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size
your GPU allows (batch sizes shown for 16 GB devices).
$ yolo_train --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
Inference
yolo_detect command runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect
.
$ yolo_detect --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
To run inference on example images in yolov5/data/images
:
$ yolo_detect --source yolov5/data/images --weights yolov5s.pt --conf 0.25
Status
Builds for the latest commit for Windows/Linux/MacOS
with Python3.6/3.7/3.8
:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file yolo5-0.0.1.tar.gz
.
File metadata
- Download URL: yolo5-0.0.1.tar.gz
- Upload date:
- Size: 4.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 907dd7b3099b5666bde681b1f2af9a41040211acb3cd8888cc75667776b8b774 |
|
MD5 | bb0d67bf5bf263fecfbe92ca0ae7b13d |
|
BLAKE2b-256 | 6436794c29dd5c549ca6d1abfb722e289fd937bf82b4b97bfa2d4ec14480d8cc |
File details
Details for the file yolo5-0.0.1-py36.py37.py38-none-any.whl
.
File metadata
- Download URL: yolo5-0.0.1-py36.py37.py38-none-any.whl
- Upload date:
- Size: 3.2 kB
- Tags: Python 3.6, Python 3.7, Python 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66054e78abb01dfa9b34425c42f4a8c552a474656a1ae11ec86d9ede9d01bae1 |
|
MD5 | affcc00deb7632116abef4d1210cdfc4 |
|
BLAKE2b-256 | b00715a2969c18dd12736db37c41bdf6fdadf2ef4580c33970751a91f55d1297 |