Skip to main content

Automatic Differentiation for rigid-body-dynamics AlgorithMs

Project description

adam

adam

Automatic Differentiation for rigid-body-dynamics AlgorithMs

adam implements a collection of algorithms for calculating rigid-body dynamics for floating-base robots, in mixed and body fixed representations (see Traversaro's A Unified View of the Equations of Motion used for Control Design of Humanoid Robots) using:

adam employs the automatic differentiation capabilities of these frameworks to compute, if needed, gradients, Jacobian, Hessians of rigid-body dynamics quantities. This approach enables the design of optimal control and reinforcement learning strategies in robotics.

adam is based on Roy Featherstone's Rigid Body Dynamics Algorithms.

Table of contents

🐍 Dependencies

Other requisites are:

  • urdfdom-py Python package, that exposes the urdf_parser_py Python module
  • jax
  • casadi
  • pytorch
  • numpy
  • array-api-compat

They will be installed in the installation step!

💾 Installation

The installation can be done either using the Python provided by apt (on Debian-based distros) or via conda (on Linux and macOS).

🐍 Installation with pip

Install python3, if not installed, for example on Ubuntu:

sudo apt install python3 python3-pip python3-venv

Create a virtual environment, if you prefer. For example:

pip install virtualenv
python3 -m venv your_virtual_env
source your_virtual_env/bin/activate

Inside the virtual environment, install the library from pip:

  • Install Jax interface:

    pip install adam-robotics[jax]
    
  • Install CasADi interface:

    pip install adam-robotics[casadi]
    
  • Install PyTorch interface:

    pip install adam-robotics[pytorch]
    
  • Install ALL interfaces:

    pip install adam-robotics[all]
    

If you want the last version:

pip install adam-robotics[selected-interface]@git+https://github.com/ami-iit/adam

or clone the repo and install:

git clone https://github.com/ami-iit/adam.git
cd adam
pip install .[selected-interface]

📦 Installation with conda

Installation from conda-forge package

  • Install CasADi interface:

    conda create -n adamenv -c conda-forge adam-robotics-casadi
    
  • Install Jax interface (warning: not available on Windows):

    conda create -n adamenv -c conda-forge adam-robotics-jax
    
  • Install PyTorch interface (warning: not available on Windows):

    conda create -n adamenv -c conda-forge adam-robotics-pytorch
    
  • Install ALL interfaces (warning: not available on Windows):

    conda create -n adamenv -c conda-forge adam-robotics-all
    

[!NOTE] Check also the conda JAX installation guide here

🔨 Installation from repo

Install in a conda environment the required dependencies:

  • Jax interface dependencies:

    conda create -n adamenv -c conda-forge jax numpy lxml prettytable matplotlib urdfdom-py array-api-compat
    
  • CasADi interface dependencies:

    conda create -n adamenv -c conda-forge casadi numpy lxml prettytable matplotlib urdfdom-py array-api-compat
    
  • PyTorch interface dependencies:

    conda create -n adamenv -c conda-forge pytorch numpy lxml prettytable matplotlib urdfdom-py array-api-compat
    
  • ALL interfaces dependencies:

    conda create -n adamenv -c conda-forge jax casadi pytorch numpy lxml prettytable matplotlib urdfdom-py array-api-compat
    

Activate the environment, clone the repo and install the library:

conda activate adamenv
git clone https://github.com/ami-iit/adam.git
cd adam
pip install --no-deps .

🚀 Usage

The following are small snippets of the use of adam. More examples are arriving! Have also a look at the tests folder.

Jax interface

[!NOTE] Check also the Jax installation guide here

import adam
from adam.jax import KinDynComputations
import icub_models
import numpy as np
import jax.numpy as jnp
from jax import jit, vmap

# if you want to icub-models https://github.com/robotology/icub-models to retrieve the urdf
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]

kinDyn = KinDynComputations(model_path, joints_name_list)
# choose the representation, if you want to use the body fixed representation
kinDyn.set_frame_velocity_representation(adam.Representations.BODY_FIXED_REPRESENTATION)
# or, if you want to use the mixed representation (that is the default)
kinDyn.set_frame_velocity_representation(adam.Representations.MIXED_REPRESENTATION)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))
M = kinDyn.mass_matrix(w_H_b, joints)
print(M)
w_H_f = kinDyn.forward_kinematics('frame_name', w_H_b, joints)

# IMPORTANT! The Jax Interface function execution can be slow! We suggest to jit them.
# For example:

def frame_forward_kinematics(w_H_b, joints):
    # This is needed since str is not a valid JAX type
    return kinDyn.forward_kinematics('frame_name', w_H_b, joints)

jitted_frame_fk = jit(frame_forward_kinematics)
w_H_f = jitted_frame_fk(w_H_b, joints)

# In the same way, the functions can be also vmapped
vmapped_frame_fk = vmap(frame_forward_kinematics, in_axes=(0, 0))
# which can be also jitted
jitted_vmapped_frame_fk = jit(vmapped_frame_fk)
# and called on a batch of data
joints_batch = jnp.tile(joints, (1024, 1))
w_H_b_batch = jnp.tile(w_H_b, (1024, 1, 1))
w_H_f_batch = jitted_vmapped_frame_fk(w_H_b_batch, joints_batch)

[!NOTE] The first call of the jitted function can be slow, since JAX needs to compile the function. Then it will be faster!

CasADi interface

import casadi as cs
import adam
from adam.casadi import KinDynComputations
import icub_models
import numpy as np

# if you want to icub-models https://github.com/robotology/icub-models to retrieve the urdf
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]

kinDyn = KinDynComputations(model_path, joints_name_list)
# choose the representation you want to use the body fixed representation
kinDyn.set_frame_velocity_representation(adam.Representations.BODY_FIXED_REPRESENTATION)
# or, if you want to use the mixed representation (that is the default)
kinDyn.set_frame_velocity_representation(adam.Representations.MIXED_REPRESENTATION)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))
M = kinDyn.mass_matrix_fun()
print(M(w_H_b, joints))

# If you want to use the symbolic version
w_H_b = cs.SX.eye(4)
joints = cs.SX.sym('joints', len(joints_name_list))
M = kinDyn.mass_matrix_fun()
print(M(w_H_b, joints))

# This is usable also with casadi.MX
w_H_b = cs.MX.eye(4)
joints = cs.MX.sym('joints', len(joints_name_list))
M = kinDyn.mass_matrix_fun()
print(M(w_H_b, joints))

PyTorch interface

import adam
from adam.pytorch import KinDynComputations
import icub_models
import numpy as np

# if you want to icub-models https://github.com/robotology/icub-models to retrieve the urdf
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]

kinDyn = KinDynComputations(model_path, joints_name_list)
# choose the representation you want to use the body fixed representation
kinDyn.set_frame_velocity_representation(adam.Representations.BODY_FIXED_REPRESENTATION)
# or, if you want to use the mixed representation (that is the default)
kinDyn.set_frame_velocity_representation(adam.Representations.MIXED_REPRESENTATION)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))
M = kinDyn.mass_matrix(w_H_b, joints)
print(M)

PyTorch Batched interface

import adam
from adam.pytorch import KinDynComputationsBatch
import icub_models

# if you want to icub-models
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = [
    'torso_pitch', 'torso_roll', 'torso_yaw', 'l_shoulder_pitch',
    'l_shoulder_roll', 'l_shoulder_yaw', 'l_elbow', 'r_shoulder_pitch',
    'r_shoulder_roll', 'r_shoulder_yaw', 'r_elbow', 'l_hip_pitch', 'l_hip_roll',
    'l_hip_yaw', 'l_knee', 'l_ankle_pitch', 'l_ankle_roll', 'r_hip_pitch',
    'r_hip_roll', 'r_hip_yaw', 'r_knee', 'r_ankle_pitch', 'r_ankle_roll'
]

kinDyn = KinDynComputationsBatch(model_path, joints_name_list)
# choose the representation you want to use the body fixed representation
kinDyn.set_frame_velocity_representation(adam.Representations.BODY_FIXED_REPRESENTATION)
# or, if you want to use the mixed representation (that is the default)
kinDyn.set_frame_velocity_representation(adam.Representations.MIXED_REPRESENTATION)
w_H_b = np.eye(4)
joints = np.ones(len(joints_name_list))

num_samples = 1024
w_H_b_batch = torch.tensor(np.tile(w_H_b, (num_samples, 1, 1)), dtype=torch.float32)
joints_batch = torch.tensor(np.tile(joints, (num_samples, 1)), dtype=torch.float32)

M = kinDyn.mass_matrix(w_H_b_batch, joints_batch)
w_H_f = kinDyn.forward_kinematics('frame_name', w_H_b_batch, joints_batch)

MuJoCo interface

adam supports loading models directly from MuJoCo MjModel objects. This is useful when working with MuJoCo simulations or models from robot_descriptions.

import mujoco
import numpy as np
from adam import Representations
from adam.numpy import KinDynComputations

# Load a MuJoCo model (e.g., from robot_descriptions)
from robot_descriptions.loaders.mujoco import load_robot_description
mj_model = load_robot_description("g1_mj_description")

# Create KinDynComputations directly from MuJoCo model
kinDyn = KinDynComputations.from_mujoco_model(mj_model)

# Set velocity representation (default is mixed)
kinDyn.set_frame_velocity_representation(Representations.MIXED_REPRESENTATION)

# Set gravity to match MuJoCo settings
kinDyn.g = np.concatenate([mj_model.opt.gravity, np.zeros(3)])

# Create MuJoCo data and set state
mj_data = mujoco.MjData(mj_model)
mj_data.qpos[:] = your_qpos  # Your configuration
mj_data.qvel[:] = your_qvel  # Your velocities
mujoco.mj_forward(mj_model, mj_data)

# Extract base transform from MuJoCo state (for floating-base robots)
from scipy.spatial.transform import Rotation as R
base_rot = R.from_quat(mj_data.qpos[3:7], scalar_first=True).as_matrix()
base_pos = mj_data.qpos[0:3]
w_H_b = np.eye(4)
w_H_b[:3, :3] = base_rot
w_H_b[:3, 3] = base_pos

# Joint positions (excluding free joint).
# Be sure the serialization between mujoco and adam is the same
joints = mj_data.qpos[7:]

# Compute dynamics quantities
M = kinDyn.mass_matrix(w_H_b, joints)
com_pos = kinDyn.CoM_position(w_H_b, joints)
J = kinDyn.jacobian('frame_name', w_H_b, joints)

[!NOTE] When using from_mujoco_model, adam automatically extracts the joint names from the MuJoCo model. You can also specify use_mujoco_actuators=True to use actuator names instead of joint names.

[!WARNING] MuJoCo uses a different velocity representation for the floating base. The free joint velocity in MuJoCo is [I \dot{p}_B, B \omega_B], while mixed representation uses [I \dot{p}_B, I \omega_B]. Make sure to handle this transformation when comparing with MuJoCo computations.

Inverse Kinematics

adam provides an interface for solving inverse kinematics problems using CasADi. The solver supports

  • position, orientation, and full pose constraints
  • frame-to-frame constraints (ball, fixed)
  • optional joint limit constraints
import casadi as cs
import numpy as np
import adam
from adam.casadi import KinDynComputations
from adam.casadi.inverse_kinematics import InverseKinematics, TargetType

# Load your robot model
import icub_models
model_path = icub_models.get_model_file("iCubGazeboV2_5")
# The joint list
joints_name_list = ...
# Create IK solver
ik = InverseKinematics(model_path, joints)
# Add a pose target on a frame (e.g., the left sole)
ik.add_target("l_sole", target_type=TargetType.POSE, as_soft_constraint=True, weight=1.0)
ik.add_ball_constraint(frame_1, frame_2, as_soft_constraint=True)

# Update the target to a desired pose
desired_position = np.array([0.3, 0.2, 1.0])
desired_orientation = np.eye(3)
ik.update_target("l_sole", (desired_position, desired_orientation))

# Solve
ik.solve()

# Retrieve solution
w_H_b_sol, q_sol = ik.get_solution()
print("Base pose:\n", w_H_b_sol)
print("Joint values:\n", q_sol)

🦸‍♂️ Contributing

adam is an open-source project. Contributions are very welcome!

Open an issue with your feature request or if you spot a bug. Then, you can also proceed with a Pull-requests! :rocket:

[!WARNING] REPOSITORY UNDER DEVELOPMENT! We cannot guarantee stable API

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adam_robotics-0.5.0.tar.gz (98.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

adam_robotics-0.5.0-py3-none-any.whl (78.6 kB view details)

Uploaded Python 3

File details

Details for the file adam_robotics-0.5.0.tar.gz.

File metadata

  • Download URL: adam_robotics-0.5.0.tar.gz
  • Upload date:
  • Size: 98.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for adam_robotics-0.5.0.tar.gz
Algorithm Hash digest
SHA256 633ac68c97a33869d4248955254b56700960f880099c2cd35cf0c417525839a7
MD5 82e02b0e1e1423aaf443f629492000e3
BLAKE2b-256 2b18bf16e448afb2d5f4dc1630ce845d9fcd329e14a37e62cef65968d3b81a5e

See more details on using hashes here.

Provenance

The following attestation bundles were made for adam_robotics-0.5.0.tar.gz:

Publisher: pypi-ci.yml on ami-iit/adam

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file adam_robotics-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: adam_robotics-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 78.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for adam_robotics-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d8ae9a73b6ec2e625d2eeb0efde76439868457049b09da7cf7bfd08f63b04d5c
MD5 864ce38eb0ac160a370ce4c920a870e3
BLAKE2b-256 ee10f6d93731ac46a4616e910e1e28eb2656b6fb6db7ac0f52305f88c6c86c8d

See more details on using hashes here.

Provenance

The following attestation bundles were made for adam_robotics-0.5.0-py3-none-any.whl:

Publisher: pypi-ci.yml on ami-iit/adam

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page