Skip to main content

A Python toolkit for Histopathology Image Analysis

Project description

HistomicsTK is a Python package for the analysis of digital pathology images. It can function as a stand-alone library, or as a Digital Slide Archive plugin that allows users to invoke image analysis jobs through HistomicsUI. The functionality offered by HistomicsTK can be extended using slicer cli web which allows developers to integrate their image analysis algorithms into DSA for dissemination through HistomicsUI.

Whole-slide imaging captures the histologic details of tissues in large multiresolution images. Improvements in imaging technology, decreases in storage costs, and regulatory approval of digital pathology for primary diagnosis have resulted in an explosion of whole-slide imaging data. Digitization enables the application of computational image analysis and machine learning algorithms to characterize the contents of these images, and to understand the relationships between histology, clinical outcomes, and molecular data from genomic platforms. Compared to the related areas of radiology and genomics, open-source tools for the management, visualization, and analysis of digital pathology has lagged. To address this we have developed HistomicsTK in coordination with the Digital Slide Archive (DSA), a platform for managing and sharing digital pathology images in a centralized web-accessible server, and HistomicsUI, a specialized user interface for annotation and markup of whole-slide images and for running image analysis tools and for scalable visualizing of dense outputs from image analysis algorithms. HistomicsTK aims to serve the needs of both pathologists/biologists interested in using state-of-the-art algorithms to analyze their data, and algorithm researchers interested in developing new/improved algorithms and disseminate them for wider use by the community.

HistomicsTK can be used in two ways:

  • As a pure Python package: enables application of image analysis algorithms to data independent of the Digital Slide Archive (DSA). HistomicsTK provides a collection of fundamental algorithms for tasks such as color normalization, color deconvolution, nuclei segmentation, and feature extraction. Read more about these capabilities here: api-docs and examples for more information.

    Installation instructions on Linux:

    To install HistomicsTK using PyPI:

    $ python -m pip install histomicstk --find-links https://girder.github.io/large_image_wheels

    To install HistomicsTK from source:

    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"
    $ python -m pip install -e .

    HistomicsTK uses the large_image library to read content from whole-slide and microscopy image formats. Depending on your exact system, installing the necessary libraries to support these formats can be complex. There are some non-official prebuilt libraries available for Linux that can be included as part of the installation by specifying pip install histomicstk --find-links https://girder.github.io/large_image_wheels. Note that if you previously installed HistomicsTK or large_image without these, you may need to add --force-reinstall --no-cache-dir to the pip install command to force it to use the find-links option.

    The system version of various libraries are used if the --find-links option is not specified. You will need to use your package manager to install appropriate libraries (on Ubuntu, for instance, you’ll need libopenslide-dev and libtiff-dev).

    To install from source on Windows:

    1- Run the following:

    $ pip install large-image
    $ pip install cmake
    $ git clone https://github.com/DigitalSlideArchive/HistomicsTK/
    $ cd HistomicsTK/
    $ python -m pip install setuptools-scm "Cython>=0.25.2" "scikit-build>=0.8.1" "cmake>=0.6.0" "numpy>=1.12.1"

    2- Run pip install libtiff

    3- Run pip install large-image-source-tiff to install typical tile sources. You may need other sources, which would require other libraries.

    4- Install Visual Studio 15 2017 Community Version

    5- Install C++ build tools. Under Tools > Get Tools and Features … > Desktop Development with C++, ensure that the first 8 boxes are checked.

    6- Run this:

    $ python -m pip install -e .
    $ pip install girder-client

    To install from source on OSX:

    Note: This needs to be confirmed and expanded by an OSX user. There are probably assumptions made about available libraries.

    Use homebrew to install libtiff and openslide or other libraries depending on your desired tile sources.

    Run:

    $ python -m pip install histomicstk large-image-source-tiff large-image-source-openslide
  • As a image-processing task library for HistomicsUI and the Digital Slide Archive: This allows end users to apply containerized analysis modules/pipelines over the web. See the Digital Slide Archive for installation instructions.

Refer to our website for more information.

Previous Versions

The HistomicsTK repository used to contain almost all of the Digital Slide Archive and HistomicsUI, and now container primarily code for image analysis algorithms and processing of annotation data. The deployment and installation code and instructions for DSA have moved to the Digital Slide Archive repository. The user interface and annotation functionality has moved to the HistomicsUI repository.

The deployment and UI code will eventually be removed from the master branch of this repository; any new development on those topics should be done in those locations.

Funding

This work is funded by the NIH grant U24-CA194362-01.

See Also

DSA/HistomicsTK project website: Demos | Success stories

Source repositories: Digital Slide Archive | HistomicsUI | large_image | slicer_cli_web

Discussion: GitHub Discussion | Discourse forum

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

histomicstk-1.3.14.tar.gz (208.3 kB view details)

Uploaded Source

Built Distributions

histomicstk-1.3.14-cp312-cp312-win_amd64.whl (552.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

histomicstk-1.3.14-cp312-cp312-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

histomicstk-1.3.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (633.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.14-cp312-cp312-macosx_11_0_arm64.whl (577.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

histomicstk-1.3.14-cp312-cp312-macosx_10_13_x86_64.whl (572.9 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

histomicstk-1.3.14-cp311-cp311-win_amd64.whl (552.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

histomicstk-1.3.14-cp311-cp311-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

histomicstk-1.3.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (644.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.14-cp311-cp311-macosx_11_0_arm64.whl (574.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

histomicstk-1.3.14-cp311-cp311-macosx_10_12_x86_64.whl (569.1 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

histomicstk-1.3.14-cp310-cp310-win_amd64.whl (551.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

histomicstk-1.3.14-cp310-cp310-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

histomicstk-1.3.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (645.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.14-cp310-cp310-macosx_11_0_arm64.whl (575.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

histomicstk-1.3.14-cp310-cp310-macosx_10_12_x86_64.whl (569.1 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

histomicstk-1.3.14-cp39-cp39-win_amd64.whl (553.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

histomicstk-1.3.14-cp39-cp39-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

histomicstk-1.3.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (646.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.14-cp39-cp39-macosx_11_0_arm64.whl (576.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

histomicstk-1.3.14-cp39-cp39-macosx_10_12_x86_64.whl (570.7 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

histomicstk-1.3.14-cp38-cp38-win_amd64.whl (553.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

histomicstk-1.3.14-cp38-cp38-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

histomicstk-1.3.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (648.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

histomicstk-1.3.14-cp38-cp38-macosx_11_0_arm64.whl (576.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

histomicstk-1.3.14-cp38-cp38-macosx_10_12_x86_64.whl (569.7 kB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file histomicstk-1.3.14.tar.gz.

File metadata

  • Download URL: histomicstk-1.3.14.tar.gz
  • Upload date:
  • Size: 208.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for histomicstk-1.3.14.tar.gz
Algorithm Hash digest
SHA256 fc7754a29846089478da1086fb93e09880e03d0c3a2a2fde4b08d1d969313e21
MD5 e7afd2b999335c34bffa801ddfcec970
BLAKE2b-256 5b72c30b8a75815aebec9303710a1e2869ddf9c86df57d7eba324b6fb4b8852b

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0186a8c3b0fe1c18aadcbe12c1854a8d6391b16bc44ffd7594968f9f4afd5b8f
MD5 8b8e2466d7b0e3eb1e33602d1027f53f
BLAKE2b-256 f81973343744ce657f67620b9c72e1b667ec0c8062c7bb98cd087912d26bd942

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 679e22a81eafd1f0afb3723a902fd0e9be1f31c76f6bd668c8b8611b8538b79e
MD5 59d3cec04d4425803e71d6c159c798ca
BLAKE2b-256 c142af30d838b188e52353dda58c6c0fef0124cf3c337a7c45e956466e026f91

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b2556b09bbc65317deec4260f404ac3e3e695496a148ef660e6d33b34e517d7
MD5 0354dc42ac4f02894d0a849656766b21
BLAKE2b-256 b4d73fe6b554aed8c3f5214c8cf57853ad299d87ed15ccca28643b59790bc8e2

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a1b05ec5494ad8e7db082c4db687e4a12d5b255dd25f424629f96a3f59f4b6de
MD5 ae2308f4b36e4a69fb73450c9eef72e9
BLAKE2b-256 d5f0e03fc6d71498f6d515d06efae6d830036b609b80f7193649254e107452df

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 44f1b84947c61041a8b917b1701e1a7c3741781da43aaa88200c4686e50040fe
MD5 042d5a4ad54ec16e99691395c0b21851
BLAKE2b-256 503c88e28a49f4abec91ad42eb2c9942c0a32cae617f90056b15facd3f247475

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d46aca9c652d8eeec7f31de5f33e67f6db82c36627584b7e3b44774fb7b7b92b
MD5 ed2b0bc05fd3378868a622a69467bfd9
BLAKE2b-256 fac9a63b22e4008d691a749f56b22a39126bcb0af8f43728df4dc6b440372ac0

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c0f833db46f606f7c9560d86392b471484b8684117a5679b35845f050ad18dbe
MD5 b4e6dcba4c5c8d7cd06f4ae1058678c1
BLAKE2b-256 f33f47bc830167e3c8736e8fbb80ce178194b069bf166baacc6bb37d5e54cdd3

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b5731794254df01e33684b18e7061120b9c036bd7cc2939d06dd4b3da233f54a
MD5 bd5bbac155a66ecac755bedb5f106974
BLAKE2b-256 2957813ad3be38f41b4c3beacce31fdea17b52fb2230e74b1ba3d00e22865c2a

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61eb1b94d278cefb6edc3bcb2cd72b30c1f7383b27b9bc9ad0e5d421e0e19d17
MD5 134b13d1a3ba1f947ee05d92b5eeeac4
BLAKE2b-256 b809affde88d6d82c04bd77608447c9b96e7f3658488c990b7bd4784d0c94e42

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2449e394bc177943db4733842b38c20e548e031ed7e82ca33869ec24936c0bfa
MD5 fc03cac579016d272618e84331b52a1d
BLAKE2b-256 c3eba237badea615819f89d2a535e249236510bdaf6d0c66ef19a3c4e54ea146

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0ced3412fc97db3324c20a5de500f0d46adefff97e384cc9d13c0ce60c71769b
MD5 b126f281e7502279ae122e299555918a
BLAKE2b-256 b8ad51dcaf53a46447d8e3adfac9489e0e4d46482a37b6a84a73b12fb46841d3

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f6ecaca4a596ab8bcc791f3cb5b80cdfc504acf28cbcd0c08a42e66eb16b2e3a
MD5 6782390486b3bdaf4272e148232340fe
BLAKE2b-256 0e6e063ea43e1e9b217b166b8926baa50415fec23317adee208078d47e79abe0

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c4b96a3414330dcd16b1d7955e3209845f7f7e80990fe2ae594d7a6be50fa59
MD5 e2280d431ffea2799c4311877e5ffd84
BLAKE2b-256 7c253f5aab2ed87ced424476dc84e5ea569415a5d10ab4390c34d1af0266c3b0

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7d6cbfa5fad5dd5bc53dc2d9f16a24ec5d8e25eefa7254a896b43d2cc4ad21c
MD5 19070d3eb9bd08a01511ad3ecbe0bf13
BLAKE2b-256 62b98091611db58513bbad71997ee427bec7c3c758544c9e944a96072b8deb4b

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5c806c2d21ea409aedbefc3ebd2f765f646d8312af96c22fad1917ccc61832d4
MD5 0884e1c4ad4528e487466476d3373fc2
BLAKE2b-256 174009c3f3dd3dc59eb33a1dc62dfc4a6f8737ba5f2793b14c47d17931a3024e

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 209b03e47d457c0e918c7c0f03a455b74acc53d330264068df8ab41bd1a4019f
MD5 dd1b805b8790c45d572a9c5c91f68b1c
BLAKE2b-256 0d20b3e5577f4860432e9f849df6763ba1a21dc74d36cc164bfbd80cc8317e4d

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 703921b043057d62c4a54682032cc774daa0002d3a6d2fb671c331f8406ad92b
MD5 407f41fd6d61bea271d7392889dd8ff1
BLAKE2b-256 0719826bb8d57479eba9aab9046fde8706ff98a46efc895deddcb4af058babdb

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7eadc8a5a1accf04dbd31647460c0d6122d1bb55961eab0104dfe0628a85a40f
MD5 cfc50b9ed6abb22a431ef77f6c8d755b
BLAKE2b-256 f8cdba8a320e61448a5473a0ec41604846f79d337ec381d2534d4354359287c1

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69674912d1ffefce342af9ba7fd65fca8c368cf8776216c30a9d2a67eb5fc829
MD5 1573b0cbfe058c83c72e637ffa3bde2a
BLAKE2b-256 21002ff75fcef702dc9ba163c7dc759cdb7ae14e1cff1a0922518f32d5a07d6b

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 cbbc575661e95568d69385e75c6f833531ad18f394172792f096163833ddb801
MD5 b2891a166c8609192cd092dc6ffc2ce7
BLAKE2b-256 8f42c26f1e597e322b561a2bdb166f5b68e2ae20136e9b9c97f33fe17fecffeb

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1a71418da0c660f5c103f4223f8783d35686b6acbfefbb891c7824d73d4cd124
MD5 42333bb8c319877c8174d10ec96a9b56
BLAKE2b-256 5169b5ff88879b0bba9c7ba3750950338c83ecf6400db3ae19f1ea1ae154c2d6

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b200b0388dbf69224e9618592dc9194f90aaada0c6bebf0da0529b774bd64025
MD5 dbac8944c21760f90973d23e3851480d
BLAKE2b-256 3fcc35cc5e32f3fe64eef8184e6ba9782acd68f3911f01d085ea909aa837e432

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7997d13cab024b0f12e428899acc0b740f08dae5dbca1cc9377987e39c9452ab
MD5 1c21aecb21ba5111100f6832d1f13827
BLAKE2b-256 9fa85195bc641bc55729b0ede5eaf6f5596dfa852a9ce276d4d42d2c4f4bde6a

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f94d247a22dacd9a65ae0c077741e3b1ec1eb04c51d3168ceef4272375e2bcc4
MD5 e3e4c1f0acb690f4030b45cf0257b41e
BLAKE2b-256 65dc49545669020ac7b3a8d4f0da115d82f89ad0f2ad480740b2de10bc841736

See more details on using hashes here.

File details

Details for the file histomicstk-1.3.14-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for histomicstk-1.3.14-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 aa41b058acf87292ddd1164703ad7492ef25ad0a77f215cb3c20e69dc725bf49
MD5 9db6db0daf0224b01229f7824035eea4
BLAKE2b-256 1e5c5b5c634a3c1f5ad460dfe72df0ce39fa035b41655495c50efc2fca812c7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page