Skip to main content

Quad (128-bit) float dtype for numpy

Project description

NumPy-QuadDType

PyPI PyPI Downloads Conda Downloads Documentation Powered by NumFOCUS

A cross-platform Quad (128-bit) float Data-Type for NumPy.

📖 Read the full documentation

Table of Contents

Installation

pip install "numpy>=2.4"
pip install numpy-quaddtype

Or with conda-forge:

conda install numpy_quaddtype

Or with mamba:

mamba install numpy_quaddtype

Or grab the development version with

pip install git+https://github.com/numpy/numpy-quaddtype.git

Usage

import numpy as np
from numpy_quaddtype import QuadPrecDType, QuadPrecision

# using sleef backend (default)
np.array([1,2,3], dtype=QuadPrecDType())
np.array([1,2,3], dtype=QuadPrecDType("sleef"))

# using longdouble backend
np.array([1,2,3], dtype=QuadPrecDType("longdouble"))

Installation from source

Linux/Unix/macOS

Prerequisites: gcc/clang, CMake (≥3.15), Python 3.11+, Git, NumPy ≥ 2.4

# setup the virtual env
python3 -m venv temp
source temp/bin/activate

# Install build and test dependencies
pip install pytest meson meson-python "numpy>=2.4"

# To build without QBLAS (default for MSVC)
# export CFLAGS="-DDISABLE_QUADBLAS"
# export CXXFLAGS="-DDISABLE_QUADBLAS"

python -m pip install ".[test]" -v

# Run the tests
python -m pytest tests

Windows

Prerequisites: Visual Studio 2017+ (with MSVC), CMake (≥3.15), Python 3.11+, Git

  1. Setup Development Environment

    Open a Developer Command Prompt for VS or Developer PowerShell for VS to ensure MSVC is properly configured.

  2. Setup Python Environment

    # Create and activate virtual environment
    python -m venv numpy_quad_env
    .\numpy_quad_env\Scripts\Activate.ps1
    
    # Install build dependencies
    pip install -U pip
    pip install numpy pytest ninja meson
    
  3. Set Environment Variables

    # Note: QBLAS is disabled on Windows due to MSVC compatibility issues
    $env:CFLAGS = "/DDISABLE_QUADBLAS"
    $env:CXXFLAGS = "/DDISABLE_QUADBLAS"
    
  4. Build and Install numpy-quaddtype

    # Build and install the package
    python -m pip install ".[test]" -v
    
  5. Test Installation

    # Run tests
    pytest -s tests
    
  6. QBLAS Disabled: QuadBLAS optimization is automatically disabled on Windows builds due to MSVC compatibility issues. This is handled by the -DDISABLE_QUADBLAS compiler flag.

  7. Visual Studio Version: The instructions assume Visual Studio 2022. For other versions, adjust the generator string:

    • VS 2019: "Visual Studio 16 2019"
    • VS 2017: "Visual Studio 15 2017"
  8. Architecture: The instructions are for x64. For x86 builds, change -A x64 to -A Win32.

Build Options

Disabling FMA (Fused Multiply-Add)

On older x86-64 CPUs without FMA support (e.g., Sandy Bridge / x86_64-v2), the SLEEF's PURECFMA scalar code path will cause illegal instruction errors. By default, FMA support is auto-detected at build time, but you can explicitly disable it:

pip install . -Csetup-args=-Ddisable_fma=true

This is a workaround for a SLEEF issue where PURECFMA scalar functions are unconditionally compiled with FMA instructions even on systems that don't support them.

When to use this option:

  • Building on or for x86_64-v2 (Sandy Bridge era) CPUs
  • Cross-compiling for older x86_64 targets
  • Running in emulators/VMs that don't expose FMA capability

Building with ThreadSanitizer (TSan)

This is a development feature to help detect threading issues. To build numpy-quaddtype with TSan enabled, follow these steps:

Use of clang is recommended with machine NOT supporting libquadmath (like ARM64). Set the compiler to clang/clang++ before proceeding.

export CC=clang
export CXX=clang++
  1. Compile free-threaded CPython with TSan support. Follow the Python Free-Threading Guide for detailed instructions.
  2. Create and activate a virtual environment using the TSan-enabled Python build.
  3. Installing dependencies:
python -m pip install meson meson-python wheel ninja
# Need NumPy built with TSan as well
python -m pip install "numpy @ git+https://github.com/numpy/numpy" -C'setup-args=-Db_sanitize=thread'
  1. Building SLEEF with TSan:
# clone the repository
git clone https://github.com/shibatch/sleef.git
cd sleef
git checkout 43a0252ba9331adc7fb10755021f802863678c38

# Build SLEEF with TSan
cmake \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
-DCMAKE_C_FLAGS="-fsanitize=thread -g -O1" \
-DCMAKE_CXX_FLAGS="-fsanitize=thread -g -O1" \
-DCMAKE_EXE_LINKER_FLAGS="-fsanitize=thread" \
-DCMAKE_SHARED_LINKER_FLAGS="-fsanitize=thread" \
-DSLEEF_BUILD_QUAD=ON \
-DSLEEF_BUILD_TESTS=OFF \
-DCMAKE_INSTALL_PREFIX=/usr/local
-S . -B build

cmake --build build -j --clean-first
cmake --install build
  1. Build and install numpy-quaddtype with TSan:
# SLEEF is already installed with TSan, we need to provide proper flags to numpy-quaddtype's meson file
# So that it does not build SLEEF again and use the installed one.

export CFLAGS="-fsanitize=thread -g -O0"
export CXXFLAGS="-fsanitize=thread -g -O0"
export LDFLAGS="-fsanitize=thread"
python -m pip install . -vv -Csetup-args=-Db_sanitize=thread

Building the documentation

The documentation for the numpy-quaddtype package is built using Sphinx. To build the documentation, follow these steps:

  1. Install the required dependencies:

    pip install ."[docs]"
    
  2. Navigate to the docs directory and build the documentation:

    cd docs/
    make html
    
  3. The generated HTML documentation can be found in the _build/html directory within the docs folder. Open the index.html file in a web browser to view the documentation, or use a local server to serve the files:

    python3 -m http.server --directory _build/html
    

Serving the documentation

The documentation is automatically built and served using GitHub Pages. Every time changes are pushed to the main branch, the documentation is rebuilt and deployed to the gh-pages branch of the repository. You can access the documentation at:

https://numpy.org/numpy-quaddtype/

Check the .github/workflows/build_docs.yml file for details.

Development Tips

Cleaning the Build Directory

The subproject folders (subprojects/sleef, subprojects/qblas) are cloned as git repositories. To fully clean them, use double force:

git clean -ffxd

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy_quaddtype-1.0.0.tar.gz (140.8 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

numpy_quaddtype-1.0.0-cp314-cp314t-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.14tWindows x86-64

numpy_quaddtype-1.0.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (920.2 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy_quaddtype-1.0.0-cp314-cp314t-macosx_15_0_x86_64.whl (915.0 kB view details)

Uploaded CPython 3.14tmacOS 15.0+ x86-64

numpy_quaddtype-1.0.0-cp314-cp314t-macosx_15_0_arm64.whl (740.4 kB view details)

Uploaded CPython 3.14tmacOS 15.0+ ARM64

numpy_quaddtype-1.0.0-cp314-cp314t-macosx_14_0_arm64.whl (750.7 kB view details)

Uploaded CPython 3.14tmacOS 14.0+ ARM64

numpy_quaddtype-1.0.0-cp314-cp314-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.14Windows x86-64

numpy_quaddtype-1.0.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (917.0 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy_quaddtype-1.0.0-cp314-cp314-macosx_15_0_x86_64.whl (911.3 kB view details)

Uploaded CPython 3.14macOS 15.0+ x86-64

numpy_quaddtype-1.0.0-cp314-cp314-macosx_15_0_arm64.whl (737.4 kB view details)

Uploaded CPython 3.14macOS 15.0+ ARM64

numpy_quaddtype-1.0.0-cp314-cp314-macosx_14_0_arm64.whl (747.6 kB view details)

Uploaded CPython 3.14macOS 14.0+ ARM64

numpy_quaddtype-1.0.0-cp313-cp313t-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.13tWindows x86-64

numpy_quaddtype-1.0.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (920.2 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy_quaddtype-1.0.0-cp313-cp313t-macosx_15_0_x86_64.whl (915.0 kB view details)

Uploaded CPython 3.13tmacOS 15.0+ x86-64

numpy_quaddtype-1.0.0-cp313-cp313t-macosx_15_0_arm64.whl (740.4 kB view details)

Uploaded CPython 3.13tmacOS 15.0+ ARM64

numpy_quaddtype-1.0.0-cp313-cp313t-macosx_14_0_arm64.whl (750.7 kB view details)

Uploaded CPython 3.13tmacOS 14.0+ ARM64

numpy_quaddtype-1.0.0-cp313-cp313-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.13Windows x86-64

numpy_quaddtype-1.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (916.9 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy_quaddtype-1.0.0-cp313-cp313-macosx_15_0_x86_64.whl (911.1 kB view details)

Uploaded CPython 3.13macOS 15.0+ x86-64

numpy_quaddtype-1.0.0-cp313-cp313-macosx_15_0_arm64.whl (737.3 kB view details)

Uploaded CPython 3.13macOS 15.0+ ARM64

numpy_quaddtype-1.0.0-cp313-cp313-macosx_14_0_arm64.whl (747.4 kB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

numpy_quaddtype-1.0.0-cp312-cp312-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.12Windows x86-64

numpy_quaddtype-1.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (916.9 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy_quaddtype-1.0.0-cp312-cp312-macosx_15_0_x86_64.whl (911.2 kB view details)

Uploaded CPython 3.12macOS 15.0+ x86-64

numpy_quaddtype-1.0.0-cp312-cp312-macosx_15_0_arm64.whl (737.3 kB view details)

Uploaded CPython 3.12macOS 15.0+ ARM64

numpy_quaddtype-1.0.0-cp312-cp312-macosx_14_0_arm64.whl (747.4 kB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

numpy_quaddtype-1.0.0-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11Windows x86-64

numpy_quaddtype-1.0.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (916.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numpy_quaddtype-1.0.0-cp311-cp311-macosx_15_0_x86_64.whl (910.9 kB view details)

Uploaded CPython 3.11macOS 15.0+ x86-64

numpy_quaddtype-1.0.0-cp311-cp311-macosx_15_0_arm64.whl (737.2 kB view details)

Uploaded CPython 3.11macOS 15.0+ ARM64

numpy_quaddtype-1.0.0-cp311-cp311-macosx_14_0_arm64.whl (747.1 kB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

File details

Details for the file numpy_quaddtype-1.0.0.tar.gz.

File metadata

  • Download URL: numpy_quaddtype-1.0.0.tar.gz
  • Upload date:
  • Size: 140.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for numpy_quaddtype-1.0.0.tar.gz
Algorithm Hash digest
SHA256 e2844e879dd6f4b44971e318d17cf2c5fa1f9fd2f04d0a50fe8813139e6dcf29
MD5 863f94a2708ac3cfcd412906e5093f1d
BLAKE2b-256 e08b7a88882808ac17a6f8d73253b785a969ea7acec34a2fd14425e4947bfae4

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0.tar.gz:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314t-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 3fcd5fa54141c8a6455847b6b0eda4a5818b4a07c9b56fd16e6e7bb300142b44
MD5 28771ba13e49d23a37ec39cb2108c904
BLAKE2b-256 785f66ebf1ea51706cacf903963740f1fc92bce2fa0f6913c1280ef243807cc0

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314t-win_amd64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2ebce04a3b6c6353aacdc0f02d4e188931467150d842261552eee301106a6fe7
MD5 a54c4e28bb5d567737225cb1dec3da11
BLAKE2b-256 7bc7051b29859f64e2d990a308bc28dc3ea747688574929d0e131f5318d67ab3

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314t-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314t-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 bcac820aba55d1c656438265db18f0d8dc399657297df17f6ee6d5c27ccd353c
MD5 397e1850bcf9da4b3f709fef6568d15f
BLAKE2b-256 be925bbd77216e9fc5d18be1bc35f0b0bca727b62c064bd373560901876070ff

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314t-macosx_15_0_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314t-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314t-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 2c5486bfb2cec925e226406af7cdd943d13ea978fd5c02fbda6398a674626453
MD5 da70e097a5ae988e6cd467e9cd7b1dfb
BLAKE2b-256 7563e6b9366e2dc025c9fd5153b1a8d76451d4e95e90afc6d067b664950e9a67

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314t-macosx_15_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 eb9e0a6cfcfafbc8d15326b17198ac6d27924147d97b97914f992467135abd30
MD5 649a4f10066a17921c0249457b4c1d3e
BLAKE2b-256 a271ca4c1215492892760834c672a25fd717143ace23c57059ca9baf806cd8af

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314t-macosx_14_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 9c1d0a7a2334531b87515ec343c27f1bebf2ef98a031280a88a727afcb32fa72
MD5 9173d2fb310ce1d3a624f00d612e24d1
BLAKE2b-256 f888759e18742c79b7211a0c525c249d21f8461e76516ad3e6f91b62245d93c6

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314-win_amd64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c2ffb2464c7456c77d88be6485985ecefdfcafd15325dc098336da5fe66796aa
MD5 6622cce754739b81c3e19420a73d0d21
BLAKE2b-256 a05110737919683717f37844bf6465107d76a3d872eb74897b031e9926c26f5a

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 d86e050d0f07cbfffa7e088c343e72efec463e602d10e60d3f7825ed3c8f45c5
MD5 ab24ac876bc62c28b21e3aba6c2566c1
BLAKE2b-256 b4e1961f2c71dea063b93827d4dfdee544995bc0d30473db5d0f6f3cdf6fe203

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314-macosx_15_0_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 74ccf5775a1755c7fa274e215505e9ef524824a98e7b77a3fe114a3677802c27
MD5 08e14453ba11d3283e41dbbf0603e786
BLAKE2b-256 26b5318db6c8e5a46f22a8a1a74c2981a83ce740aa85ca88506358ae77b00607

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314-macosx_15_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp314-cp314-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp314-cp314-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 bd4f6e390bd7062176b6e4162615b87fd1a636382daf1f3b4987dc3fca140ed0
MD5 b406ecd2e52fe0f556816db6d89e8831
BLAKE2b-256 40b4a26c78acc12b872c61f93b63f370082dc0d66a9950141c8841795bee9a02

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp314-cp314-macosx_14_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313t-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 7ec99a1669c40a9648fee548bc561a0394ae57c5882d1483df7f58389794de3d
MD5 0f1ef598f12592b043d9b3ba3707b361
BLAKE2b-256 acd02de45309412818867a02a6334314e5073caa268ab6cfbeb77638962060aa

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313t-win_amd64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a4b1092b08787bbc2f1b30a770ac7686783ae6da8b9cd63ca22ad03a03579d8f
MD5 e4f7c9b19f5efae1bde891a03a100e03
BLAKE2b-256 1cf98d5b3329ce3dc60c90f4b4d81ded66f0c5747e1f921858c823d4c222ad3d

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313t-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313t-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 e0efddeeffdf00e8a9dde00bcd483948d34e941b96a9d017303f682f5f10ff9c
MD5 d60052779b3dbca0ebf9bae96aae2c8c
BLAKE2b-256 e909ef1d70b2124c8b90cd774fcb42d180cd112389652cd3b6714417b57666d6

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313t-macosx_15_0_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313t-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313t-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 e55ac0c71a3c838cef07e7c772cc8e026b8ce7edd647dd335034fd641012ffbc
MD5 3890eb94bde6c36e454e1d62ff12f06a
BLAKE2b-256 5998e314326d497679e26d0680986c7c4f5a0061f0d949e9e0b57dba47b0635c

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313t-macosx_15_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d6740ec01feaad78180654374979b93a0b141e7ba49c05440eb4b97da4ea6947
MD5 f9c3e46586d950248bd4a932e6f23dc1
BLAKE2b-256 982ed0a906443516ed01a29b1d2f8953f5e397da749322422cb49a5ff95f2a8f

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313t-macosx_14_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 d38bc5b82ec1652aeb1d3a8f4fa0cca868fde106211d0500b6c277c244be3f72
MD5 6f380435f13512500e15ca82d4ab72d1
BLAKE2b-256 fec6a3c94d1cccc31ff84ff0a1e61d1500c49f507bd9828083294219c45cabef

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313-win_amd64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 400f1ae58a4bed855a212a81794b1ecc2ddcf1b8ab832e15d7778c0d505ea1c9
MD5 29f6c35df7bf7834961e42db85ac6f05
BLAKE2b-256 df3176ed067ea8df6a372a63376d6a300b75406092f57492be81b4f6e0a22943

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 1726af51088650d6592f398c16f7c6a196f0d38839f8f2e93eaedaa4b5d7c7c1
MD5 84731bbe073fd693eed3febcbdf29d3f
BLAKE2b-256 67f064781b629c17d676eeaf3b7a793fa7030c534293e91e29dfb3545fdd5c28

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313-macosx_15_0_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 c9dbf183eaecc64f48be48c18f81a5e3dee25185f156dc89e1a3fc9f76dc87be
MD5 0f87c518a54789a28fe8aefa8fca30b5
BLAKE2b-256 f2a3488b054f683a74a95e09f48716e634641d419017a211c0ed1791b523632e

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313-macosx_15_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3e3811b350f23c4f73cef78dd3b589423fe46700ca094e1bb6e877f1fc248d21
MD5 60f8c6c64e78d134c29c4bb8e8283039
BLAKE2b-256 cad02f4b464648178acf046a180ae511c314ec3a2a7045b975cab30da1a403f7

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp313-cp313-macosx_14_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 30076d0a769fc8ad20b150b990d2dbedd7c25deb8acc783768caf7ac67640539
MD5 f1e4b1921d7d13b88d53386cac3a045f
BLAKE2b-256 3ed6de60615b320578115bdcbbf6815c04ac84e299b99cca9f40a10a2eeb6d65

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp312-cp312-win_amd64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c63dc6e0b68a9decbfd4b8ce5f6aee40e357d120e82788ced606ceeb21223c36
MD5 bede820404e2d1a0d3d01d00119504e7
BLAKE2b-256 c4d724d6b38294f96ae8b7d9bc8a4c87b772c7caa5c9277804fcd3aa26f5d416

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp312-cp312-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp312-cp312-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 8028438519dbb133f1cc51a110855faaaeac665ae32c8c9be2a8df1d0dc265f2
MD5 377acac568e3bf1dd26b6e3b45144781
BLAKE2b-256 811a04b973047925aa367bda0799660d4eb240fa1c2fba70468516a6d5559c11

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp312-cp312-macosx_15_0_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp312-cp312-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp312-cp312-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 73159b5c921bb8ff0503dcb37e16e8708360762929ecf594f8e567a72144c71c
MD5 1d1d3071e39d1673626ed0ecf1aae1ab
BLAKE2b-256 5c48c286ba68f40bd6cf7a7d9f0a7910f6b613f42ba8fa3c5863adf5b64f1d4b

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp312-cp312-macosx_15_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 46239dece67e65f89f1c8241e3501f79007f559037314803df2eb3006b65d800
MD5 da503f7e6bf77760b98e045a3672ebe4
BLAKE2b-256 f3de0c7cd0bd21580a5ee042c781175e7a5c76d2f0cc6ff04e0ca3f70280d922

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp312-cp312-macosx_14_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 da9c1c1465f3fdb886f301e125a1939e3ad74c2ce499a6a4420386851941ce0b
MD5 8827aa8cb14558e703f1f94f76cf4b9b
BLAKE2b-256 9c0d3667ecdc193faaf02391e4640d97f8dced2cd6faa173e85eb7e7e6f3233f

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp311-cp311-win_amd64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e89b8243fa892f2500f0c3added9f075291e41fd61901a31a9f53cb1644bb20d
MD5 c817a5843a1ab8bc953b10d28f5e2d54
BLAKE2b-256 dcebbf192cc505365a474a004e3a3cda9ea15c0c2e15bc88a840f4e7227ed786

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp311-cp311-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp311-cp311-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 4283770a9b56fea336d0dbe0164a1311a73403a5a3e7d9ec475c57c28f94b91f
MD5 823227d1c78266cf31be91b50810f3a1
BLAKE2b-256 5d40fff3476e1b4705ba14bb9628317eb298feaecc92711822df30fe885dfbf0

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp311-cp311-macosx_15_0_x86_64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp311-cp311-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp311-cp311-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 b3c61de32101995a4d23dcdbfff1690141a3364def6d6487d6c6eef4d15305ef
MD5 ba96fc4f1f16c9febe666c26c79e90db
BLAKE2b-256 eef7d16ce3e65308b4735c9be6ed49d16ddba86b22a89855ac04e64db853dc56

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp311-cp311-macosx_15_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file numpy_quaddtype-1.0.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_quaddtype-1.0.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 6240b8e4fa520b08014fb897a2fd7ab4f645224ccbbbc826acfe7ecdb570d5c8
MD5 f53be322ad11d7c21061e74887c5ad3b
BLAKE2b-256 4d3b0855e20e6716629e391602c97952de47ac548d9ba9ad19a043e8fb3be5ed

See more details on using hashes here.

Provenance

The following attestation bundles were made for numpy_quaddtype-1.0.0-cp311-cp311-macosx_14_0_arm64.whl:

Publisher: build_wheels.yml on numpy/numpy-quaddtype

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page