Skip to main content

Run Ollama models easily, anywhere – including online platforms like Google Colab

Project description

Quick Llama

PyPI version Downloads License Contributors GitHub last commit Python versions

A Python wrapper for Ollama that simplifies managing and interacting with LLMs on colab with multi model and reasoning model support.

QuickLlama automates server setup, model management, and seamless interaction with LLMs, providing an effortless developer experience.

🚀 Colab-Ready: Easily run and experiment with QuickLlama on Google Colab for hassle-free, cloud-based development!

Note: Don’t forget to use a GPU if you actually want it to perform well!

Installtion

pip install quick-llama
!pip install quick-llama

Serve a model

from quick_llama import QuickLlama
model = 'gemma3'
quick_llama = QuickLlama(model_name=model,verbose=True)

quick_llama.init() # -> starts the server in background

Serve QuickLlama

from quick_llama import QuickLlama

from ollama import chat
from ollama import ChatResponse

# Defaults to gemma3
model = 'gemma3'
quick_llama = QuickLlama(model_name=model,verbose=True)

quick_llama.init()

response: ChatResponse = chat(model=model, messages=[
  {
    'role': 'user',
    'content': 'Why is the sky blue?',
  },
])
print(response['message']['content'])
# or access fields directly from the response object
print(response.message.content)

quick_llama.stop()

MultiModels

import requests
import os
from ollama import chat
from quick_llama import QuickLlama

model = 'gemma3'
quick_llama = QuickLlama(model_name=model,verbose=True)

quick_llama.init()

# Step 1: Download the image
img_url = "https://raw.githubusercontent.com/nuhmanpk/quick-llama/main/images/llama-image.webp" # quick llama cover photo
img_path = "temp_llama_image.webp"

with open(img_path, "wb") as f:
    f.write(requests.get(img_url).content)

# Step 2: Send the image to the model
response = chat(
    model=model,
    messages=[
        {
            "role": "user",
            "content": "Describe what you see in this photo.",
            "images": [img_path],
        }
    ]
)

# Step 3: Print the result
print(response['message']['content'])

# Step 4: Clean up the image file
os.remove(img_path)
from quick_llama import QuickLlama


from ollama import chat
from ollama import ChatResponse

# Defaults to gemma3
quick_llama = QuickLlama(model_name="gemma3")

quick_llama.init()

response: ChatResponse = chat(model='gemma3', messages=[
  {
    'role': 'user',
    'content': 'what is 6 times 5?',
  },
])
print(response['message']['content'])

print(response.message.content)

Use with Langchain

from quick_llama import QuickLlama
from langchain_ollama import OllamaLLM

model_name = "gemma3"

quick_llama = QuickLlama(model_name=model_name,verbose=True)

quick_llama.init()

model = OllamaLLM(model=model_name)
model.invoke("Come up with 10 names for a song about parrots")

Use custom Models

quick_llama = QuickLlama()  # Defaults to mistral
quick_llama.init()

# Custom Model
# Supports all models from https://ollama.com/search
quick_llama = QuickLlama(model_name="custom-model-name")
quick_llama.init()

List Models

quick_llama.list_models()

Stop Model

quick_llama.stop_model("gemma3")

Stop Server

quick_llama.stop()

Made with ❤️ by Nuhman. Happy Coding 🚀

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quick_llama-0.1.0.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quick_llama-0.1.0-py3-none-any.whl (5.6 kB view details)

Uploaded Python 3

File details

Details for the file quick_llama-0.1.0.tar.gz.

File metadata

  • Download URL: quick_llama-0.1.0.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.18

File hashes

Hashes for quick_llama-0.1.0.tar.gz
Algorithm Hash digest
SHA256 af7a95d730e43a520b6dae0a4e592bad917f23e354a634012f14bb4c0f8c15b5
MD5 338aaa97bbbc8e28f9a9a94f95abe684
BLAKE2b-256 c9bfbdfe5532a0ad7bc1a7b5cc113643a358b0e9a722041cc11e4ef19221ae05

See more details on using hashes here.

File details

Details for the file quick_llama-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: quick_llama-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 5.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.18

File hashes

Hashes for quick_llama-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c27ca5d7fcca85dc86cd76d4179ea9bb532b6b4c4f83f8772a920f44b08ed610
MD5 4f08c12f3023b50526acda5d5e464c23
BLAKE2b-256 1b550d948c4185071a9e56ede698e22568f502fa0e57664eb37e94801c0b6228

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page