Skip to main content

Linearity-exploiting reverse mode autodiff library and nonlinear program solver DSL

Project description

Sleipnir

C++ Python PyPI Downloads Website C++ API Python API Discord

Sparsity and Linearity-Exploiting Interior-Point solver - Now Internally Readable

Named after Odin's eight-legged horse from Norse mythology, Sleipnir is a linearity-exploiting reverse mode autodiff library, interior-point method, and nonlinear program solver DSL for C++23 and Python. The DSL automatically chooses the best solver based on the problem structure.

#include <print>

#include <sleipnir/optimization/problem.hpp>

int main() {
  // Find the x, y pair with the largest product for which x + 3y = 36
  slp::Problem<double> problem;

  auto x = problem.decision_variable();
  auto y = problem.decision_variable();

  problem.maximize(x * y);
  problem.subject_to(x + 3 * y == 36);
  problem.solve();

  // x = 18.0, y = 6.0
  std::println("x = {}, y = {}", x.value(), y.value());
}
#!/usr/bin/env python3

from sleipnir.optimization import Problem


def main():
    # Find the x, y pair with the largest product for which x + 3y = 36
    problem = Problem()

    x = problem.decision_variable()
    y = problem.decision_variable()

    problem.maximize(x * y)
    problem.subject_to(x + 3 * y == 36)
    problem.solve()

    # x = 18.0, y = 6.0
    print(f"x = {x.value()}, y = {y.value()}")


if __name__ == "__main__":
    main()

Here's the Python output with problem.solve(diagnostics=True).

User-configured exit conditions:
   error below 1e-08
   iteration callback requested stop
   executed 5000 iterations

Problem structure:
   quadratic cost function
   linear equality constraints
   no inequality constraints

2 decision variables
1 equality constraint
   1 linear
0 inequality constraints

Invoking SQP solver

┏━━━━┯━━━━┯━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━┯━━━━━┯━━━━━━━━┯━━━━━━━━┯━━┓
┃iter│type│time (ms)   error        cost       infeas.   │complement.    μ     reg │primal α│ dual α │↩ ┃
┡━━━━┷━━━━┷━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━┷━━━━━┷━━━━━━━━┷━━━━━━━━┷━━┩
│   0 norm     0.006 1.799760e-03 -1.080000e+02 6.016734e-10 0.000000e+00 0.00e+00 10⁻⁴  1.00e+00 1.00e+00  0│
│   1 norm     0.008 1.199700e-07 -1.080000e+02 9.947598e-14 0.000000e+00 0.00e+00 10⁻⁴  1.00e+00 1.00e+00  0│
│   2 norm     0.002 4.998668e-12 -1.080000e+02 0.000000e+00 0.000000e+00 0.00e+00 10⁻⁴  1.00e+00 1.00e+00  0│
└────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━┯━━━━┓
┃     solver trace           percent      │total (ms)│each (ms)│runs┃
┡━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━┷━━━━┩
│solver                  100.00%▕█████████▏      0.056     0.056    1│
│   setup                 5.36%▕▍              0.003     0.003    1│
│   iteration            30.36%▕██▋            0.017     0.005    3│
│     feasibility        0.00%▕               0.000     0.000    3│
│     iter callbacks      0.00%▕               0.000     0.000    3│
│     KKT matrix build    1.79%▕▏              0.001     0.000    3│
│     KKT matrix decomp  14.29%▕█▎             0.008     0.002    3│
│     KKT system solve    1.79%▕▏              0.001     0.000    3│
│     line search         1.79%▕▏              0.001     0.000    3│
│       SOC               0.00%▕               0.000     0.000    0│
│     next iter prep      0.00%▕               0.000     0.000    3│
│     f(x)                0.00%▕               0.000     0.000    7│
│     ∇f(x)               1.79%▕▏              0.001     0.000    4│
│     ∇²ₓₓL               0.00%▕               0.000     0.000    4│
│     cₑ(x)               1.79%▕▏              0.001     0.000    7│
│     ∂cₑ/∂x              0.00%▕               0.000     0.000    4│
└────────────────────────────────────────────────────────────────────┘
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━┯━━━━┓
┃    autodiff trace          percent      │total (ms)│each (ms)│runs┃
┡━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━┷━━━━┩
│setup                   100.00%▕█████████▏      0.013     0.013    1│
│   ∇f(x)                 7.69%▕▋              0.001     0.001    1│
│   ∂cₑ/∂x                7.69%▕▋              0.001     0.001    1│
│   ∇²ₓₓL                38.46%▕███▍           0.005     0.005    1│
└────────────────────────────────────────────────────────────────────┘

Exit: success
x = 17.99999999999167, y = 6.0000000000027764

The C++ API also supports arbitrary scalar types, so users can specify higher precision floating-point types at the cost of speed.

Sleipnir's internals are intended to be readable by those who aren't domain experts with links to explanatory material for its algorithms.

Benchmarks

flywheel-scalability-results cart-pole-scalability-results
flywheel-scalability-results-casadi.csv
flywheel-scalability-results-sleipnir.csv
cart-pole-scalability-results-casadi.csv
cart-pole-scalability-results-sleipnir.csv

Generated by tools/generate-scalability-results.sh from benchmarks/scalability source.

  • CPU: AMD Ryzen 7 7840U
  • RAM: 64 GB, 5600 MHz DDR5
  • Compiler version: g++ (GCC) 15.2.1 20250813

The following thirdparty software was used in the benchmarks:

  • CasADi 3.7.2 (autodiff and NLP solver frontend)
  • Ipopt 3.14.19 (NLP solver backend)
  • MUMPS 5.7.3 (linear solver)

Ipopt uses MUMPS by default because it has free licensing. Commercial linear solvers may be much faster.

See benchmark details for more.

Install

Minimum system requirements

  • Windows
  • Linux
    • OS: Ubuntu 24.04
    • Runtime: GCC 14 libstdc++ (run sudo apt install g++-14)
  • macOS
    • OS: macOS 14.5
    • Runtime: Apple Clang 16.0.0 libc++ from Xcode 16.2 (run xcode-select --install)

C++ library

To install Sleipnir system-wide, see the build instructions.

To use Sleipnir within a CMake project, add the following to your CMakeLists.txt:

include(FetchContent)

FetchContent_Declare(
    Sleipnir
    GIT_REPOSITORY https://github.com/SleipnirGroup/Sleipnir.git
    GIT_TAG main
    EXCLUDE_FROM_ALL
    SYSTEM
)
FetchContent_MakeAvailable(Sleipnir)

target_link_libraries(MyApp PUBLIC Sleipnir::Sleipnir)

Python library

pip install sleipnirgroup-jormungandr

API docs

See the C++ API docs and Python API docs.

Examples

See the examples, C++ optimization unit tests, and Python optimization unit tests.

Build

Dependencies

  • C++23 compiler
    • On Windows 11 or greater, install Visual Studio Community 2022 and select the C++ programming language during installation
    • On Ubuntu 24.04 or greater, install GCC 14 via sudo apt install g++-14
    • On macOS 14.5 or greater, install the Xcode 16.2 command-line build tools via xcode-select --install
  • CMake 3.21 or greater
    • On Windows, install from the link above
    • On Linux, install via sudo apt install cmake
    • On macOS, install via brew install cmake
  • Python 3.12 or greater
    • On Windows, install from the link above
    • On Linux, install via sudo apt install python
    • On macOS, install via brew install python
  • Eigen
  • small_vector
  • nanobind (build only)
  • Catch2 (tests only)

Library dependencies which aren't installed locally will be automatically downloaded and built by CMake.

The benchmark executables require CasADi to be installed locally.

C++ library

On Windows, open a Developer PowerShell. On Linux or macOS, open a Bash shell.

# Clone the repository
git clone git@github.com:SleipnirGroup/Sleipnir
cd Sleipnir

# Configure; automatically downloads library dependencies
cmake -B build -S .

# Build
cmake --build build

# Test
ctest --test-dir build --output-on-failure

# Install
cmake --install build --prefix pkgdir

The following build types can be specified via -DCMAKE_BUILD_TYPE during CMake configure:

  • Debug
    • Optimizations off
    • Debug symbols on
  • Release
    • Optimizations on
    • Debug symbols off
  • RelWithDebInfo (default)
    • Release build type, but with debug info
  • MinSizeRel
    • Minimum size release build
  • Asan
    • Enables address sanitizer
  • Tsan
    • Enables thread sanitizer
  • Ubsan
    • Enables undefined behavior sanitizer
  • Perf
    • RelWithDebInfo build type, but with frame pointer so perf utility can use it

Python library

On Windows, open a Developer PowerShell. On Linux or macOS, open a Bash shell.

# Clone the repository
git clone git@github.com:SleipnirGroup/Sleipnir
cd Sleipnir

# Setup
pip install --user build

# Build
python -m build --wheel

# Install
pip install --user dist/sleipnirgroup_jormungandr-*.whl

# Test
pytest

Test diagnostics

Passing the --enable-diagnostics flag to the test executable enables solver diagnostic prints.

Some test problems generate CSV files containing their solutions. These can be plotted with tools/plot_test_problem_solutions.py.

Benchmark details

Running the benchmarks

Benchmark projects are in the benchmarks folder. To compile and run them, run the following in the repository root:

# Install CasADi and [matplotlib, numpy, scipy] pip packages first
cmake -B build -S . -DBUILD_BENCHMARKS=ON
cmake --build build
./tools/generate-scalability-results.sh

See the contents of ./tools/generate-scalability-results.sh for how to run specific benchmarks.

How we improved performance

Make more decisions at compile time

During problem setup, equality and inequality constraints are encoded as different types, so the appropriate setup behavior can be selected at compile time via operator overloads.

Reuse autodiff computation results that are still valid (aka caching)

The autodiff library automatically records the linearity of every node in the computational graph. Linear functions have constant first derivatives, and quadratic functions have constant second derivatives. The constant derivatives are computed in the initialization phase and reused for all solver iterations. Only nonlinear parts of the computational graph are recomputed during each solver iteration.

For quadratic problems, we compute the Lagrangian Hessian and constraint Jacobians once with no problem structure hints from the user.

Use a performant linear algebra library with fast sparse solvers

Eigen provides these. It also has no required dependencies, which makes cross compilation much easier.

Use a pool allocator for autodiff expression nodes

This promotes fast allocation/deallocation and good memory locality.

We could mitigate the solver's high last-level-cache miss rate (~42% on the machine above) further by breaking apart the expression nodes into fields that are commonly iterated together. We used to use a tape, which gave computational graph updates linear access patterns, but tapes are monotonic buffers with no way to reclaim storage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sleipnirgroup_jormungandr-0.3.2.tar.gz (119.3 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

sleipnirgroup_jormungandr-0.3.2-cp312-abi3-win_arm64.whl (470.5 kB view details)

Uploaded CPython 3.12+Windows ARM64

sleipnirgroup_jormungandr-0.3.2-cp312-abi3-win_amd64.whl (493.3 kB view details)

Uploaded CPython 3.12+Windows x86-64

sleipnirgroup_jormungandr-0.3.2-cp312-abi3-manylinux_2_39_x86_64.whl (437.7 kB view details)

Uploaded CPython 3.12+manylinux: glibc 2.39+ x86-64

sleipnirgroup_jormungandr-0.3.2-cp312-abi3-manylinux_2_39_aarch64.whl (400.0 kB view details)

Uploaded CPython 3.12+manylinux: glibc 2.39+ ARM64

sleipnirgroup_jormungandr-0.3.2-cp312-abi3-macosx_14_0_universal2.whl (811.5 kB view details)

Uploaded CPython 3.12+macOS 14.0+ universal2 (ARM64, x86-64)

File details

Details for the file sleipnirgroup_jormungandr-0.3.2.tar.gz.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.2.tar.gz
Algorithm Hash digest
SHA256 1a77d2741acc46075fafe460681dda9b365b88c486a47159cc5b7d85bab7d19f
MD5 d79e5dce73bdeee1f3daa25432c8fc4d
BLAKE2b-256 27557e1190bc2d2b56a1446d306b2636fd27b0423b23e45186feb90d2ffeb7cf

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.2.tar.gz:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.2-cp312-abi3-win_arm64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-win_arm64.whl
Algorithm Hash digest
SHA256 526bb49b84f702daaa7fac83fdbdf20a565dc3a2fe5125bf421e53525914af25
MD5 70e1ba6905210c0ca4db75e90ed7b08f
BLAKE2b-256 92edb05f838506a3a2b4cecb787eab43b422f9abaf171253f802fd46438973b2

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-win_arm64.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.2-cp312-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 387b52c9ba5da1f9d70a9662acc1d7f5d427babdef87f88b3fa087323aeff69e
MD5 a9981d409efece1a87481d846dce8445
BLAKE2b-256 8e32cde7378cf06e08e1166cfe897990a7cfda740ca90f8a3e4ce034a9c3f3c5

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-win_amd64.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.2-cp312-abi3-manylinux_2_39_x86_64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-manylinux_2_39_x86_64.whl
Algorithm Hash digest
SHA256 68116e12be4aad6827e6df924f765f8209ea3065e7c125a6246659f4666ebac6
MD5 0dbe09ad6427260609c7ea6acc32cc07
BLAKE2b-256 7364ada8f840f4be77d69ef43636fcae5e0e63aa3e05fc175200bc14b59fae9a

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-manylinux_2_39_x86_64.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.2-cp312-abi3-manylinux_2_39_aarch64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-manylinux_2_39_aarch64.whl
Algorithm Hash digest
SHA256 aa2cf020a0662d432eeea04f4ff2eccd9b90d458239670f073fbda5cd5d25218
MD5 e490644d10b97742d058917f7958822c
BLAKE2b-256 27d955c0f14901d4dac8a94fe333e8013ab7302d52cdfa4c7a1e7ec1e84dd0ae

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-manylinux_2_39_aarch64.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.2-cp312-abi3-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 e91f69197aee9f0280ea99600dd293039facfb39ff1c844d87c8a64563acd2e9
MD5 50c1a394662535f77dd3d69b0c627c74
BLAKE2b-256 89a2eb92acf5399b66fd6527e3a4f7934de813abfbb06a7ff1f41d767449817a

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.2-cp312-abi3-macosx_14_0_universal2.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page