Skip to main content

Reverse mode autodiff library and NLP solver DSL

Project description

Sleipnir

C++ Python PyPI Downloads Website C++ API Python API Discord

Sparsity and Linearity-Exploiting Interior-Point solver - Now Internally Readable

Named after Odin's eight-legged horse from Norse mythology, Sleipnir is a reverse mode autodiff library, interior-point method, and NLP solver DSL for C++23 and Python. The DSL automatically chooses the best solver based on the problem structure.

#include <print>

#include <sleipnir/optimization/problem.hpp>

int main() {
  // Find the x, y pair with the largest product for which x + 3y = 36
  slp::Problem<double> problem;

  auto x = problem.decision_variable();
  auto y = problem.decision_variable();

  problem.maximize(x * y);
  problem.subject_to(x + 3 * y == 36);
  problem.solve();

  // x = 18.0, y = 6.0
  std::println("x = {}, y = {}", x.value(), y.value());
}
#!/usr/bin/env python3

from sleipnir.optimization import Problem


def main():
    # Find the x, y pair with the largest product for which x + 3y = 36
    problem = Problem()

    x, y = problem.decision_variable(2)

    problem.maximize(x * y)
    problem.subject_to(x + 3 * y == 36)
    problem.solve()

    # x = 18.0, y = 6.0
    print(f"x = {x.value()}, y = {y.value()}")


if __name__ == "__main__":
    main()

Here's the Python output with problem.solve(diagnostics=True).

User-configured exit conditions:
   error below 1e-08
   iteration callback requested stop
   executed 5000 iterations

Problem structure:
   quadratic cost function
   linear equality constraints
   no inequality constraints

2 decision variables
1 equality constraint
   1 linear
0 inequality constraints

Invoking SQP solver

┏━━━━┯━━━━┯━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━┯━━━━━┯━━━━━━━━┯━━━━━━━━┯━━┓
┃iter│type│time (ms)   error        cost       infeas.   │complement.    μ     reg │primal α│ dual α │↩ ┃
┡━━━━┷━━━━┷━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━┷━━━━━┷━━━━━━━━┷━━━━━━━━┷━━┩
│   0 norm     0.006 1.799760e-03 -1.080000e+02 6.016734e-10 0.000000e+00 0.00e+00 10⁻⁴  1.00e+00 1.00e+00  0│
│   1 norm     0.008 1.199700e-07 -1.080000e+02 9.947598e-14 0.000000e+00 0.00e+00 10⁻⁴  1.00e+00 1.00e+00  0│
│   2 norm     0.002 4.998668e-12 -1.080000e+02 0.000000e+00 0.000000e+00 0.00e+00 10⁻⁴  1.00e+00 1.00e+00  0│
└────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━┯━━━━┓
┃     solver trace           percent      │total (ms)│each (ms)│runs┃
┡━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━┷━━━━┩
│solver                  100.00%▕█████████▏      0.056     0.056    1│
│   setup                 5.36%▕▍              0.003     0.003    1│
│   iteration            30.36%▕██▋            0.017     0.005    3│
│     feasibility        0.00%▕               0.000     0.000    3│
│     iter callbacks      0.00%▕               0.000     0.000    3│
│     KKT matrix build    1.79%▕▏              0.001     0.000    3│
│     KKT matrix decomp  14.29%▕█▎             0.008     0.002    3│
│     KKT system solve    1.79%▕▏              0.001     0.000    3│
│     line search         1.79%▕▏              0.001     0.000    3│
│       SOC               0.00%▕               0.000     0.000    0│
│     next iter prep      0.00%▕               0.000     0.000    3│
│     f(x)                0.00%▕               0.000     0.000    7│
│     ∇f(x)               1.79%▕▏              0.001     0.000    4│
│     ∇²ₓₓL               0.00%▕               0.000     0.000    4│
│     cₑ(x)               1.79%▕▏              0.001     0.000    7│
│     ∂cₑ/∂x              0.00%▕               0.000     0.000    4│
└────────────────────────────────────────────────────────────────────┘
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━┯━━━━┓
┃    autodiff trace          percent      │total (ms)│each (ms)│runs┃
┡━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━┷━━━━┩
│setup                   100.00%▕█████████▏      0.013     0.013    1│
│   ∇f(x)                 7.69%▕▋              0.001     0.001    1│
│   ∂cₑ/∂x                7.69%▕▋              0.001     0.001    1│
│   ∇²ₓₓL                38.46%▕███▍           0.005     0.005    1│
└────────────────────────────────────────────────────────────────────┘

Exit: success
x = 17.99999999999167, y = 6.0000000000027764

The C++ API also supports arbitrary scalar types, so users can specify higher precision floating-point types at the cost of speed.

Sleipnir's internals are intended to be readable by those who aren't domain experts with links to explanatory material for its algorithms.

Benchmarks

flywheel-scalability-results cart-pole-scalability-results
flywheel-scalability-results-casadi.csv
flywheel-scalability-results-sleipnir.csv
cart-pole-scalability-results-casadi.csv
cart-pole-scalability-results-sleipnir.csv

Generated by tools/generate-scalability-results.sh from benchmarks/scalability source.

  • CPU: AMD Ryzen 7 7840U
  • RAM: 64 GB, 5600 MHz DDR5
  • Compiler version: g++ (GCC) 15.2.1 20250813

The following thirdparty software was used in the benchmarks:

  • CasADi 3.7.2 (autodiff and NLP solver frontend)
  • Ipopt 3.14.19 (NLP solver backend)
  • MUMPS 5.7.3 (linear solver)

Ipopt uses MUMPS by default because it has free licensing. Commercial linear solvers may be much faster.

See benchmark details for more.

Install

Minimum system requirements

  • Windows
  • Linux
    • OS: Ubuntu 24.04
    • Runtime: GCC 14 libstdc++ (run sudo apt install g++-14)
  • macOS
    • OS: macOS 14.5
    • Runtime: Apple Clang 16.0.0 libc++ from Xcode 16.2 (run xcode-select --install)

C++ library

To install Sleipnir system-wide, see the build instructions.

To use Sleipnir within a CMake project, add the following to your CMakeLists.txt:

include(FetchContent)

FetchContent_Declare(
    Sleipnir
    GIT_REPOSITORY https://github.com/SleipnirGroup/Sleipnir.git
    GIT_TAG main
    EXCLUDE_FROM_ALL
    SYSTEM
)
FetchContent_MakeAvailable(Sleipnir)

target_link_libraries(MyApp PUBLIC Sleipnir::Sleipnir)

Python library

pip install sleipnirgroup-jormungandr

API docs

See the C++ API docs and Python API docs.

Examples

See the examples, C++ optimization unit tests, and Python optimization unit tests.

Build

Dependencies

  • C++23 compiler
    • On Windows 11 or greater, install Visual Studio Community 2022 and select the C++ programming language during installation
    • On Ubuntu 24.04 or greater, install GCC 14 via sudo apt install g++-14
    • On macOS 14.5 or greater, install the Xcode 16.2 command-line build tools via xcode-select --install
  • CMake 3.21 or greater
    • On Windows, install from the link above
    • On Linux, install via sudo apt install cmake
    • On macOS, install via brew install cmake
  • Python 3.12 or greater
    • On Windows, install from the link above
    • On Linux, install via sudo apt install python
    • On macOS, install via brew install python
  • Eigen
  • small_vector
  • nanobind (build only)
  • Catch2 (tests only)

Library dependencies which aren't installed locally will be automatically downloaded and built by CMake.

The benchmark executables require CasADi to be installed locally.

C++ library

On Windows, open a Developer PowerShell. On Linux or macOS, open a Bash shell.

# Clone the repository
git clone git@github.com:SleipnirGroup/Sleipnir
cd Sleipnir

# Configure; automatically downloads library dependencies
cmake -B build -S .

# Build
cmake --build build

# Test
ctest --test-dir build --output-on-failure

# Install
cmake --install build --prefix pkgdir

The following build types can be specified via -DCMAKE_BUILD_TYPE during CMake configure:

  • Debug
    • Optimizations off
    • Debug symbols on
  • Release
    • Optimizations on
    • Debug symbols off
  • RelWithDebInfo (default)
    • Release build type, but with debug info
  • MinSizeRel
    • Minimum size release build
  • Asan
    • Enables address sanitizer
  • Tsan
    • Enables thread sanitizer
  • Ubsan
    • Enables undefined behavior sanitizer
  • Perf
    • RelWithDebInfo build type, but with frame pointer so perf utility can use it

Python library

On Windows, open a Developer PowerShell. On Linux or macOS, open a Bash shell.

# Clone the repository
git clone git@github.com:SleipnirGroup/Sleipnir
cd Sleipnir

# Setup
pip install --user build

# Build
python -m build --wheel

# Install
pip install --user dist/sleipnirgroup_jormungandr-*.whl

# Test
pytest

Test diagnostics

Passing the --enable-diagnostics flag to the test executable enables solver diagnostic prints.

Some test problems generate CSV files containing their solutions. These can be plotted with tools/plot_test_problem_solutions.py.

Benchmark details

Running the benchmarks

Benchmark projects are in the benchmarks folder. To compile and run them, run the following in the repository root:

# Install CasADi and [matplotlib, numpy, scipy] pip packages first
cmake -B build -S . -DBUILD_BENCHMARKS=ON
cmake --build build
./tools/generate-scalability-results.sh

See the contents of ./tools/generate-scalability-results.sh for how to run specific benchmarks.

How we improved performance

Make more decisions at compile time

During problem setup, equality and inequality constraints are encoded as different types, so the appropriate setup behavior can be selected at compile time via operator overloads.

Reuse autodiff computation results that are still valid (aka caching)

The autodiff library automatically records the linearity of every node in the computational graph. Linear functions have constant first derivatives, and quadratic functions have constant second derivatives. The constant derivatives are computed in the initialization phase and reused for all solver iterations. Only nonlinear parts of the computational graph are recomputed during each solver iteration.

For quadratic problems, we compute the Lagrangian Hessian and constraint Jacobians once with no problem structure hints from the user.

Use a performant linear algebra library with fast sparse solvers

Eigen provides these. It also has no required dependencies, which makes cross compilation much easier.

Use a pool allocator for autodiff expression nodes

This promotes fast allocation/deallocation and good memory locality.

We could mitigate the solver's high last-level-cache miss rate (~42% on the machine above) further by breaking apart the expression nodes into fields that are commonly iterated together. We used to use a tape, which gave computational graph updates linear access patterns, but tapes are monotonic buffers with no way to reclaim storage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sleipnirgroup_jormungandr-0.3.4.tar.gz (119.4 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

sleipnirgroup_jormungandr-0.3.4-cp312-abi3-win_arm64.whl (495.3 kB view details)

Uploaded CPython 3.12+Windows ARM64

sleipnirgroup_jormungandr-0.3.4-cp312-abi3-win_amd64.whl (519.5 kB view details)

Uploaded CPython 3.12+Windows x86-64

sleipnirgroup_jormungandr-0.3.4-cp312-abi3-manylinux_2_39_x86_64.whl (464.5 kB view details)

Uploaded CPython 3.12+manylinux: glibc 2.39+ x86-64

sleipnirgroup_jormungandr-0.3.4-cp312-abi3-manylinux_2_39_aarch64.whl (421.7 kB view details)

Uploaded CPython 3.12+manylinux: glibc 2.39+ ARM64

sleipnirgroup_jormungandr-0.3.4-cp312-abi3-macosx_14_0_universal2.whl (859.0 kB view details)

Uploaded CPython 3.12+macOS 14.0+ universal2 (ARM64, x86-64)

File details

Details for the file sleipnirgroup_jormungandr-0.3.4.tar.gz.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.4.tar.gz
Algorithm Hash digest
SHA256 89e45f7879000713ac9924b7a3db8609a7c51e50d44a58ee0326966e25b64448
MD5 70b504a655c1f59fd8d4563ec856f3f0
BLAKE2b-256 ca82bbc3ef5ea66fd5e698ca5c5a70bd11da0b6bbd4cf8d43f19bf479c3e3296

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.4.tar.gz:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.4-cp312-abi3-win_arm64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-win_arm64.whl
Algorithm Hash digest
SHA256 200caeb7e0c546f8d41ced107a7fc5cd8bb8ae59f54692777d66e9948b32196f
MD5 9e00189fec4f95229a2d3b80f515cf4b
BLAKE2b-256 7490d27ab30427164e3e4511a9c007273601a6ae1dddbe1bd30d561d7fa456fa

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-win_arm64.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.4-cp312-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 e018bcdd44e14ac49238adabd89de81720f697bca4a64e09c960d4e16ccd0b27
MD5 f0ca7e0e444d2e3c9b51f9a07647c965
BLAKE2b-256 361f7aac7ae667cd75754bdb2aa7f05c9bd459c182ec3b0aa307cf22c1cbea1f

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-win_amd64.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.4-cp312-abi3-manylinux_2_39_x86_64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-manylinux_2_39_x86_64.whl
Algorithm Hash digest
SHA256 5a04a1e4a5cdc1742649cea9dee9f073d96e8855b461bc63188a5cfd3881d9e4
MD5 8e05da2437d08ef04dfc5fa6c51f3274
BLAKE2b-256 ec11c3eece23a8aa9f2dfafd2f8c368244ef1b14cfbe32b2e3c39b88d13f8cb9

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-manylinux_2_39_x86_64.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.4-cp312-abi3-manylinux_2_39_aarch64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-manylinux_2_39_aarch64.whl
Algorithm Hash digest
SHA256 896a3fdbccabf6a4a05b638d48e40183ae65f59a3f46807b1b7fe50d3b4ada59
MD5 242f31e416b507bbdf2a552745693561
BLAKE2b-256 efab47087d4b46e9b64806fa85cfb3c65e592a08cdd07f003088f6342538cb1e

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-manylinux_2_39_aarch64.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.3.4-cp312-abi3-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 3a41b57fd6104ca2423c9053a4024c87b58bb18abde83d2dad1547419fb78c6b
MD5 5fa7f98a60884049d5bbfa9f9a42fe30
BLAKE2b-256 caf41d29e4e4efa0fa4d86559f705037d898969f1657f51251482bd6ad832fec

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.3.4-cp312-abi3-macosx_14_0_universal2.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page