Skip to main content

A linearity-exploiting reverse mode autodiff library and nonlinear program solver DSL.

Project description

Sleipnir

C++ Python PyPI Downloads Website C++ API Python API Discord

Sparsity and Linearity-Exploiting Interior-Point solver - Now Internally Readable

Named after Odin's eight-legged horse from Norse mythology, Sleipnir is a linearity-exploiting reverse mode autodiff library, interior-point method, and nonlinear program solver DSL for C++23 and Python. The DSL automatically chooses the best solver based on the problem structure.

#include <print>

#include <sleipnir/optimization/problem.hpp>

int main() {
  // Find the x, y pair with the largest product for which x + 3y = 36
  slp::Problem<double> problem;

  auto x = problem.decision_variable();
  auto y = problem.decision_variable();

  problem.maximize(x * y);
  problem.subject_to(x + 3 * y == 36);
  problem.solve();

  // x = 18.0, y = 6.0
  std::println("x = {}, y = {}", x.value(), y.value());
}
#!/usr/bin/env python3

from jormungandr.optimization import Problem


def main():
    # Find the x, y pair with the largest product for which x + 3y = 36
    problem = Problem()

    x = problem.decision_variable()
    y = problem.decision_variable()

    problem.maximize(x * y)
    problem.subject_to(x + 3 * y == 36)
    problem.solve()

    # x = 18.0, y = 6.0
    print(f"x = {x.value()}, y = {y.value()}")


if __name__ == "__main__":
    main()

Here's the Python output with problem.solve(diagnostics=True).

User-configured exit conditions:
   error below 1e-08
   iteration callback requested stop
   executed 5000 iterations

Problem structure:
   quadratic cost function
   linear equality constraints
   no inequality constraints

2 decision variables
1 equality constraint
   1 linear
0 inequality constraints

Invoking SQP solver

┏━━━━┯━━━━┯━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━┯━━━━━┯━━━━━━━━┯━━━━━━━━┯━━┓
┃iter│type│time (ms)   error        cost       infeas.   │complement.    μ     reg │primal α│ dual α │↩ ┃
┡━━━━┷━━━━┷━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━┷━━━━━┷━━━━━━━━┷━━━━━━━━┷━━┩
│   0 norm     0.006 1.799760e-03 -1.080000e+02 6.016734e-10 0.000000e+00 0.00e+00 10⁻⁴  1.00e+00 1.00e+00  0│
│   1 norm     0.008 1.199700e-07 -1.080000e+02 9.947598e-14 0.000000e+00 0.00e+00 10⁻⁴  1.00e+00 1.00e+00  0│
│   2 norm     0.002 4.998668e-12 -1.080000e+02 0.000000e+00 0.000000e+00 0.00e+00 10⁻⁴  1.00e+00 1.00e+00  0│
└────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━┯━━━━┓
┃     solver trace           percent      │total (ms)│each (ms)│runs┃
┡━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━┷━━━━┩
│solver                  100.00%▕█████████▏      0.056     0.056    1│
│   setup                 5.36%▕▍              0.003     0.003    1│
│   iteration            30.36%▕██▋            0.017     0.005    3│
│     feasibility        0.00%▕               0.000     0.000    3│
│     iter callbacks      0.00%▕               0.000     0.000    3│
│     KKT matrix build    1.79%▕▏              0.001     0.000    3│
│     KKT matrix decomp  14.29%▕█▎             0.008     0.002    3│
│     KKT system solve    1.79%▕▏              0.001     0.000    3│
│     line search         1.79%▕▏              0.001     0.000    3│
│       SOC               0.00%▕               0.000     0.000    0│
│     next iter prep      0.00%▕               0.000     0.000    3│
│     f(x)                0.00%▕               0.000     0.000    7│
│     ∇f(x)               1.79%▕▏              0.001     0.000    4│
│     ∇²ₓₓL               0.00%▕               0.000     0.000    4│
│     cₑ(x)               1.79%▕▏              0.001     0.000    7│
│     ∂cₑ/∂x              0.00%▕               0.000     0.000    4│
└────────────────────────────────────────────────────────────────────┘
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━┯━━━━┓
┃    autodiff trace          percent      │total (ms)│each (ms)│runs┃
┡━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━┷━━━━┩
│setup                   100.00%▕█████████▏      0.013     0.013    1│
│   ∇f(x)                 7.69%▕▋              0.001     0.001    1│
│   ∂cₑ/∂x                7.69%▕▋              0.001     0.001    1│
│   ∇²ₓₓL                38.46%▕███▍           0.005     0.005    1│
└────────────────────────────────────────────────────────────────────┘

Exit: success
x = 17.99999999999167, y = 6.0000000000027764

The C++ API also supports arbitrary scalar types, so users can specify higher precision floating-point types at the cost of speed.

Sleipnir's internals are intended to be readable by those who aren't domain experts with links to explanatory material for its algorithms.

Benchmarks

flywheel-scalability-results cart-pole-scalability-results
flywheel-scalability-results-casadi.csv
flywheel-scalability-results-sleipnir.csv
cart-pole-scalability-results-casadi.csv
cart-pole-scalability-results-sleipnir.csv

Generated by tools/generate-scalability-results.sh from benchmarks/scalability source.

  • CPU: AMD Ryzen 7 7840U
  • RAM: 64 GB, 5600 MHz DDR5
  • Compiler version: g++ (GCC) 15.2.1 20250813

The following thirdparty software was used in the benchmarks:

  • CasADi 3.7.2 (autodiff and NLP solver frontend)
  • Ipopt 3.14.19 (NLP solver backend)
  • MUMPS 5.7.3 (linear solver)

Ipopt uses MUMPS by default because it has free licensing. Commercial linear solvers may be much faster.

See benchmark details for more.

Install

Minimum system requirements

  • Windows
  • Linux
    • OS: Ubuntu 24.04
    • Runtime: GCC 14 libstdc++ (run sudo apt install g++-14)
  • macOS
    • OS: macOS 14.5
    • Runtime: Apple Clang 16.0.0 libc++ from Xcode 16.2 (run xcode-select --install)

C++ library

To install Sleipnir system-wide, see the build instructions.

To use Sleipnir within a CMake project, add the following to your CMakeLists.txt:

include(FetchContent)

FetchContent_Declare(
    Sleipnir
    GIT_REPOSITORY https://github.com/SleipnirGroup/Sleipnir.git
    GIT_TAG main
    EXCLUDE_FROM_ALL
    SYSTEM
)
FetchContent_MakeAvailable(Sleipnir)

target_link_libraries(MyApp PUBLIC Sleipnir::Sleipnir)

Python library

pip install sleipnirgroup-jormungandr

API docs

See the C++ API docs and Python API docs.

Examples

See the examples, C++ optimization unit tests, and Python optimization unit tests.

Build

Dependencies

  • C++23 compiler
    • On Windows 10 or greater, install Visual Studio Community 2022 and select the C++ programming language during installation
    • On Ubuntu 24.04 or greater, install GCC 14 via sudo apt install g++-14
    • On macOS 14.5 or greater, install the Xcode 16.2 command-line build tools via xcode-select --install
  • CMake 3.21 or greater
    • On Windows, install from the link above
    • On Linux, install via sudo apt install cmake
    • On macOS, install via brew install cmake
  • Python 3.12 or greater
    • On Windows, install from the link above
    • On Linux, install via sudo apt install python
    • On macOS, install via brew install python
  • Eigen
  • small_vector
  • nanobind (build only)
  • Catch2 (tests only)

Library dependencies which aren't installed locally will be automatically downloaded and built by CMake.

The benchmark executables require CasADi to be installed locally.

C++ library

On Windows, open a Developer PowerShell. On Linux or macOS, open a Bash shell.

# Clone the repository
git clone git@github.com:SleipnirGroup/Sleipnir
cd Sleipnir

# Configure; automatically downloads library dependencies
cmake -B build -S .

# Build
cmake --build build

# Test
ctest --test-dir build --output-on-failure

# Install
cmake --install build --prefix pkgdir

The following build types can be specified via -DCMAKE_BUILD_TYPE during CMake configure:

  • Debug
    • Optimizations off
    • Debug symbols on
  • Release
    • Optimizations on
    • Debug symbols off
  • RelWithDebInfo (default)
    • Release build type, but with debug info
  • MinSizeRel
    • Minimum size release build
  • Asan
    • Enables address sanitizer
  • Tsan
    • Enables thread sanitizer
  • Ubsan
    • Enables undefined behavior sanitizer
  • Perf
    • RelWithDebInfo build type, but with frame pointer so perf utility can use it

Python library

On Windows, open a Developer PowerShell. On Linux or macOS, open a Bash shell.

# Clone the repository
git clone git@github.com:SleipnirGroup/Sleipnir
cd Sleipnir

# Setup
pip install --user build

# Build
python -m build --wheel

# Install
pip install --user dist/sleipnirgroup_jormungandr-*.whl

# Test
pytest

Test diagnostics

Passing the --enable-diagnostics flag to the test executable enables solver diagnostic prints.

Some test problems generate CSV files containing their solutions. These can be plotted with tools/plot_test_problem_solutions.py.

Benchmark details

Running the benchmarks

Benchmark projects are in the benchmarks folder. To compile and run them, run the following in the repository root:

# Install CasADi and [matplotlib, numpy, scipy] pip packages first
cmake -B build -S . -DBUILD_BENCHMARKS=ON
cmake --build build
./tools/generate-scalability-results.sh

See the contents of ./tools/generate-scalability-results.sh for how to run specific benchmarks.

How we improved performance

Make more decisions at compile time

During problem setup, equality and inequality constraints are encoded as different types, so the appropriate setup behavior can be selected at compile time via operator overloads.

Reuse autodiff computation results that are still valid (aka caching)

The autodiff library automatically records the linearity of every node in the computational graph. Linear functions have constant first derivatives, and quadratic functions have constant second derivatives. The constant derivatives are computed in the initialization phase and reused for all solver iterations. Only nonlinear parts of the computational graph are recomputed during each solver iteration.

For quadratic problems, we compute the Lagrangian Hessian and constraint Jacobians once with no problem structure hints from the user.

Use a performant linear algebra library with fast sparse solvers

Eigen provides these. It also has no required dependencies, which makes cross compilation much easier.

Use a pool allocator for autodiff expression nodes

This promotes fast allocation/deallocation and good memory locality.

We could mitigate the solver's high last-level-cache miss rate (~42% on the machine above) further by breaking apart the expression nodes into fields that are commonly iterated together. We used to use a tape, which gave computational graph updates linear access patterns, but tapes are monotonic buffers with no way to reclaim storage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sleipnirgroup_jormungandr-0.2.0.tar.gz (117.0 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

sleipnirgroup_jormungandr-0.2.0-cp312-abi3-win_arm64.whl (531.1 kB view details)

Uploaded CPython 3.12+Windows ARM64

sleipnirgroup_jormungandr-0.2.0-cp312-abi3-win_amd64.whl (554.1 kB view details)

Uploaded CPython 3.12+Windows x86-64

sleipnirgroup_jormungandr-0.2.0-cp312-abi3-manylinux_2_39_x86_64.whl (498.4 kB view details)

Uploaded CPython 3.12+manylinux: glibc 2.39+ x86-64

sleipnirgroup_jormungandr-0.2.0-cp312-abi3-manylinux_2_39_aarch64.whl (460.1 kB view details)

Uploaded CPython 3.12+manylinux: glibc 2.39+ ARM64

sleipnirgroup_jormungandr-0.2.0-cp312-abi3-macosx_14_0_universal2.whl (872.6 kB view details)

Uploaded CPython 3.12+macOS 14.0+ universal2 (ARM64, x86-64)

File details

Details for the file sleipnirgroup_jormungandr-0.2.0.tar.gz.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.2.0.tar.gz
Algorithm Hash digest
SHA256 2728b64148afa415168ccb82d9cc904a2bafc296ea3edf908a854549ee0123f1
MD5 8a0cd2a1a12d55f79a1e61fc3d66f791
BLAKE2b-256 25940eb7035e8a37e3ee2ac152079f888b155653082b8edd307afb40fe7f5904

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.2.0.tar.gz:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file sleipnirgroup_jormungandr-0.2.0-cp312-abi3-win_arm64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.2.0-cp312-abi3-win_arm64.whl
Algorithm Hash digest
SHA256 d3887d10e271cbd52fe555c23a88c40645d9bb522b0e3673e180ad9c356033b3
MD5 01603e590da5410b9858bb4de923e33b
BLAKE2b-256 a974d8207f0bc20c92582c2e5cc4f430afebaced2b86cfe0e1e39bfd425f5ce5

See more details on using hashes here.

File details

Details for the file sleipnirgroup_jormungandr-0.2.0-cp312-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.2.0-cp312-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 ce3369bfb279d0a7ee75433c2c4e7d8620fab1d216a2f815af01b79831a6d073
MD5 b314ac8231edf0bb152d43196f8bc6ae
BLAKE2b-256 d7bdb9ca2390d55199b2a478697a7bce8e112f55ae988bfad1137b97a4f15803

See more details on using hashes here.

File details

Details for the file sleipnirgroup_jormungandr-0.2.0-cp312-abi3-manylinux_2_39_x86_64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.2.0-cp312-abi3-manylinux_2_39_x86_64.whl
Algorithm Hash digest
SHA256 c9dd48b5c29f8d4b2f45bdb0be9e7c8ba8b14e38b01e1b16511d68b0cc88b754
MD5 45f83cf5ef29738e0f8bc4f8be3eecff
BLAKE2b-256 ff86b684439fd10403cd9d291d6a72c9df944e745747907f3ff05b19e8061e58

See more details on using hashes here.

File details

Details for the file sleipnirgroup_jormungandr-0.2.0-cp312-abi3-manylinux_2_39_aarch64.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.2.0-cp312-abi3-manylinux_2_39_aarch64.whl
Algorithm Hash digest
SHA256 970182cdef8b3523394c69ed2133b3d4c54f15733856fa6dafded42e22f010f2
MD5 3acd8363d9efc3df680a2e53fd7c37ab
BLAKE2b-256 17ab0139ae2a1cb112fb770a3586ac3861fccbd5659c35408d48cb575dcecbab

See more details on using hashes here.

File details

Details for the file sleipnirgroup_jormungandr-0.2.0-cp312-abi3-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for sleipnirgroup_jormungandr-0.2.0-cp312-abi3-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 f94de4ab1a17c4f9043c820a6524ab56f69c9e6b48f2a3446b8a95d92864f737
MD5 1094c500dfb14affbec34fc1eacee22d
BLAKE2b-256 2d7ebe6a025d2b5771267908c4d5782ab5a699fb0f6470943ac9573bc57cd9ff

See more details on using hashes here.

Provenance

The following attestation bundles were made for sleipnirgroup_jormungandr-0.2.0-cp312-abi3-macosx_14_0_universal2.whl:

Publisher: python.yml on SleipnirGroup/Sleipnir

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page