Skip to main content

Visually query Spanner Graph data in notebooks.

Project description

Spanner Graph Notebook: Explore Your Data Visually

The Spanner Graph Notebook tool lets you visually query Spanner Graph in a notebook environment (e.g. Google Colab and Jupyter Notebook).

Using GQL query syntax, you can extract graph insights and relationship patterns, including node and edge properties and neighbor expansion analysis. The tool also provides graph schema metadata visualization, tabular results inspection and diverse layout topologies.

The notebook visualization provides a user experience similar to Spanner Studio visualization, enabling you to visually inspect Spanner Graph data outside of Google Cloud console.

Table of Contents

Prerequisites

You need a Spanner database with graph schema and data. The Getting started with Spanner Graph codelab or the Set up and query Spanner Graph page walks through the setup process.

Google Colab Usage (Installation-Free)

You can directly use %%spanner_graph magic command to visualize graph query results in Google Colab. The magic command must provide GCP resource options and a query string:

  • a Google Cloud Project ID for --project option.
  • a Spanner Instance ID for --instance option.
  • a Spanner database name for --database option.
  • a GQL query string that returns graph elements as results.

The query must return graph elements in JSON format using the SAFE_TO_JSON or TO_JSON function. The following example code cell in Colab visualizes account transfers:

%%spanner_graph --project my-gcp-project --instance my-spanner-instance --database my-database

GRAPH FinGraph
MATCH result_paths = (src:Account {is_blocked: true})-[:Transfers]->(dest:Account)
RETURN SAFE_TO_JSON(result_paths) AS result_paths

You'll be prompted to authenticate via pydata-google-auth if Google Cloud Platform credentials aren't readily available.

Installation and Usage in Jupyter Notebook or JupyterLab

Install the package

Follow the commands below to create a managed Python environment (example based on virtualenv) and install spanner-graph-notebook.

# Create the virtualenv `viz`.
python3 -m venv viz

# Activate the virtualenv.
source viz/bin/activate

# Install dependencies.
pip install spanner-graph-notebook

Launch Jupyter Notebook

When in the root directory of the package, run jupyter notebook or jupyter lab to launch your Jupyter notebook environment.

jupyter notebook

As Jupyter local server runs, it will open up a web portal. You can step through an example notebook sample.ipynb.

You must run %load_ext spanner_graphs to load this package. sample.ipynb contains this cell already.

Following the code steps in the sample notebook, you can visually inspect a mock dataset or your Spanner Graph. You'll be prompted to authenticate via pydata-google-auth if Google Cloud Platform credentials aren't readily available.

Query Requirements

Use TO_JSON function to return graph elements

Graph queries must use SAFE_TO_JSON or TO_JSON function to return graph elements in JSON format . We recommend visualizing graph paths for data completeness and ease of use.

👍 Good example returning a path as JSON.


GRAPH FinGraph
MATCH query_path = (person:Person {id: 5})-[owns:Owns]->(accnt:Account)
RETURN SAFE_TO_JSON(query_path) AS path_json
👍 Good example returning a path as JSON in a multiple-hop query.

GRAPH FinGraph
MATCH query_path = (src:Account {id: 9})-[edge]->{1,3}(dst:Account)
RETURN SAFE_TO_JSON(query_path) as path_json
👍 Good example returning multiple paths as JSON.

GRAPH FinGraph
MATCH path_1 = (person:Person {id: 5})-[:Owns]->(accnt:Account),
      path_2 = (src:Account {id: 9})-[:Transfers]->(dst:Account)
RETURN SAFE_TO_JSON(path_1) as path_1,
       SAFE_TO_JSON(path_2) as path_2
👎 Anti-example returning node properties rather than graph elements in JSON.
   Scalar intergers or strings cannot be visualized.

GRAPH FinGraph
MATCH (person:Person {id: 5})-[owns:Owns]->(accnt:Account)
RETURN person.id AS person,
       owns.amount AS owns,
       accnt.id AS accnt;
👎 Anti-example returning each node and edges in JSON individually.
   This will work but is more verbose than returning paths.

GRAPH FinGraph
MATCH (person:Person {id: 5})-[owns:Owns]->(accnt:Account)
RETURN SAFE_TO_JSON(person) AS person_json,
       SAFE_TO_JSON(owns) AS owns_json,
       SAFE_TO_JSON(accnt) AS accnt_json,

Testing changes

First, install the test dependencies:

pip install -r requirements-test.txt

Then run unit and integration tests with the command below:

cd spanner_graphs && python -m unittest discover -s tests -p "*_test.py"

For frontend testing:

cd frontend
npm install
npm run test:unit
npm run test:visual

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spanner_graph_notebook-1.1.7.tar.gz (6.9 MB view details)

Uploaded Source

Built Distribution

spanner_graph_notebook-1.1.7-py3-none-any.whl (6.9 MB view details)

Uploaded Python 3

File details

Details for the file spanner_graph_notebook-1.1.7.tar.gz.

File metadata

  • Download URL: spanner_graph_notebook-1.1.7.tar.gz
  • Upload date:
  • Size: 6.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for spanner_graph_notebook-1.1.7.tar.gz
Algorithm Hash digest
SHA256 a878a5fbbcc6df900d44c38f433ba4c9fa6bba01e1b6063944570ba59931027d
MD5 f52ec507eb1ad39263abb4f65c002f94
BLAKE2b-256 5c027e2b09edb1f9ddfd0a1cb811a72410ff344b14819ff91bc392e719b50601

See more details on using hashes here.

Provenance

The following attestation bundles were made for spanner_graph_notebook-1.1.7.tar.gz:

Publisher: publish-to-pypi.yml on cloudspannerecosystem/spanner-graph-notebook

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file spanner_graph_notebook-1.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for spanner_graph_notebook-1.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 7d971f039c56bf7b3606a98c2cd741f653c454d9ccbd345e28bec2f9bc06f45f
MD5 d5d672e840dea6ea503cd08d43e42210
BLAKE2b-256 86306c01c5f50a09953a9b312468e6fbc079ead13275335c454017244a5defaf

See more details on using hashes here.

Provenance

The following attestation bundles were made for spanner_graph_notebook-1.1.7-py3-none-any.whl:

Publisher: publish-to-pypi.yml on cloudspannerecosystem/spanner-graph-notebook

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page