Dataset class for PyTorch and the TinyImageNet dataset, with automated download and extraction.
Project description
torchvision-tinyimagenet
Dataset class for PyTorch and the TinyImageNet dataset.
Installation
pip install tinyimagenet
How to use
from tinyimagenet import TinyImageNet
from pathlib import Path
import logging
logging.basicConfig(level=logging.INFO)
split ="val"
dataset = TinyImageNet(Path("~/.torchvision/tinyimagenet/"),split=split)
n = len(dataset)
print(f"TinyImageNet, split {split}, has {n} samples.")
n_samples = 5
print(f"Showing info of {n_samples} samples...")
for i in range(0,n,n//n_samples):
image,klass = dataset[i]
print(f"Sample of class {klass:3d}, image {image}, words {dataset.idx_to_words[klass]}")
You can also check the quickstart notebook to peruse the dataset.
Finally, we also provide some example notebooks that use TinyImageNet with PyTorch models:
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file tinyimagenet-0.9.9.tar.gz.
File metadata
- Download URL: tinyimagenet-0.9.9.tar.gz
- Upload date:
- Size: 11.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
bcbd21749abc63138fedf213501fd509c3e8495f2e78b8af5492338f876cc07a
|
|
| MD5 |
90dd492af4bcc614cca0da96ead70b83
|
|
| BLAKE2b-256 |
1e79a9284fd961664d6c23a4f85ca6ee7db82273f37d61cd7317bab83e4b223f
|
File details
Details for the file tinyimagenet-0.9.9-py2.py3-none-any.whl.
File metadata
- Download URL: tinyimagenet-0.9.9-py2.py3-none-any.whl
- Upload date:
- Size: 9.2 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
941c7d3b19cb2f3fa719799530745a3cc0e7095a1990f2f5be107d355ec359df
|
|
| MD5 |
d478384db7781856589d74fdf29825e0
|
|
| BLAKE2b-256 |
5d0791f5937864082de49f5c32d2d79983829d38a1b911f5e0dc719e8cf16eb1
|