Skip to main content

Fully automated end to end machine learning pipeline

Project description

Amplo - AutoML (for Machine Data)

image image PyPI - License

Welcome to the Automated Machine Learning package Amplo. Amplo's AutoML is designed specifically for machine data and works very well with tabular time series data (especially unbalanced classification!).

Though this is a standalone Python package, Amplo's AutoML is also available on Amplo's ML Developer Platform. With a graphical user interface and various data connectors, it is the ideal place for service engineers to get started on Predictive Maintenance development.

Amplo's AutoML Pipeline contains the entire Machine Learning development cycle, including exploratory data analysis, data cleaning, feature extraction, feature selection, model selection, hyper parameter optimization, stacking, version control, production-ready models and documentation.

Downloading Amplo

The easiest way is to install our Python package through PyPi:

pip install Amplo

2. Amplo AutoML Features

Exploratory Data Analysis

from Amplo.AutoML import DataExploring Automated Exploratory Data Analysis. Covers binary classification and regression. It generates:

  • Missing Values Plot
  • Line Plots of all features
  • Box plots of all features
  • Co-linearity Plot
  • SHAP Values
  • Random Forest Feature Importance
  • Predictive Power Score

Additionally fFor Regression:

  • Seasonality Plots
  • Differentiated Variance Plot
  • Auto Correlation Function Plot
  • Partial Auto Correlation Function Plot
  • Cross Correlation Function Plot
  • Scatter Plots

Data Processing

from Amplo.AutoML import DataProcessing Automated Data Cleaning. Handles the following items:

  • Cleans Column Names
  • Duplicate Columns and Rows
  • Data Types
  • Missing Values
  • Outliers
  • Constant Columns

Feature Processing

from Amplo.AutoML import FeatureProcessing Automatically extracts and selects features. Removes Co-Linear Features. Included Feature Extraction algorithms:

  • Multiplicative Features
  • Dividing Features
  • Additive Features
  • Subtractive Features
  • Trigonometric Features
  • K-Means Features
  • Lagged Features
  • Differencing Features

Included Feature Selection algorithms:

  • Random Forest Feature Importance (Threshold and Increment)
  • Predictive Power Score
  • Boruta

Modelling

from Amplo.AutoML import Modelling Runs various regression or classification models. Includes:

  • Scikit's Linear Model
  • Scikit's Random Forest
  • Scikit's Bagging
  • Scikit's GradientBoosting
  • Scikit's HistGradientBoosting
  • DMLC's XGBoost
  • Catboost's Catboost
  • Microsoft's LightGBM

Grid Search

from Amplo.GridSearch import *

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Amplo-0.2.6.tar.gz (56.8 kB view details)

Uploaded Source

Built Distribution

Amplo-0.2.6-py3-none-any.whl (74.3 kB view details)

Uploaded Python 3

File details

Details for the file Amplo-0.2.6.tar.gz.

File metadata

  • Download URL: Amplo-0.2.6.tar.gz
  • Upload date:
  • Size: 56.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for Amplo-0.2.6.tar.gz
Algorithm Hash digest
SHA256 5fe7c064d2d748465ff2e8d859d4e1df8b5c188c3ed2395a7b5ba11d7344c6ab
MD5 23e68f09bed10b45f999c190fed7b45a
BLAKE2b-256 a4bfce958d68d1fc493b118afb28d0c47ff0d1cad812e5fe7de0828a67517458

See more details on using hashes here.

File details

Details for the file Amplo-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: Amplo-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 74.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for Amplo-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 ae3265278890a25702a263bd24477af23b8b9bc65a910cbc175e937d9d1c2047
MD5 1e9d8c3e2f31c18f6846742e98d89723
BLAKE2b-256 a88611de8d569c79512902ebd13daeec60c8d18f3987683ec3b52b886e55f943

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page