Skip to main content

Fully automated end to end machine learning pipeline

Project description

Amplo - AutoML (for Machine Data)

image image PyPI - License

Welcome to the Automated Machine Learning package Amplo. Amplo's AutoML is designed specifically for machine data and works very well with tabular time series data (especially unbalanced classification!).

Though this is a standalone Python package, Amplo's AutoML is also available on Amplo's ML Developer Platform. With a graphical user interface and various data connectors, it is the ideal place for service engineers to get started on Predictive Maintenance development.

Amplo's AutoML Pipeline contains the entire Machine Learning development cycle, including exploratory data analysis, data cleaning, feature extraction, feature selection, model selection, hyper parameter optimization, stacking, version control, production-ready models and documentation.

Downloading Amplo

The easiest way is to install our Python package through PyPi:

pip install Amplo

2. Amplo AutoML Features

Exploratory Data Analysis

from Amplo.AutoML import DataExploring Automated Exploratory Data Analysis. Covers binary classification and regression. It generates:

  • Missing Values Plot
  • Line Plots of all features
  • Box plots of all features
  • Co-linearity Plot
  • SHAP Values
  • Random Forest Feature Importance
  • Predictive Power Score

Additionally fFor Regression:

  • Seasonality Plots
  • Differentiated Variance Plot
  • Auto Correlation Function Plot
  • Partial Auto Correlation Function Plot
  • Cross Correlation Function Plot
  • Scatter Plots

Data Processing

from Amplo.AutoML import DataProcessing Automated Data Cleaning. Handles the following items:

  • Cleans Column Names
  • Duplicate Columns and Rows
  • Data Types
  • Missing Values
  • Outliers
  • Constant Columns

Feature Processing

from Amplo.AutoML import FeatureProcessing Automatically extracts and selects features. Removes Co-Linear Features. Included Feature Extraction algorithms:

  • Multiplicative Features
  • Dividing Features
  • Additive Features
  • Subtractive Features
  • Trigonometric Features
  • K-Means Features
  • Lagged Features
  • Differencing Features

Included Feature Selection algorithms:

  • Random Forest Feature Importance (Threshold and Increment)
  • Predictive Power Score
  • Boruta

Modelling

from Amplo.AutoML import Modelling Runs various regression or classification models. Includes:

  • Scikit's Linear Model
  • Scikit's Random Forest
  • Scikit's Bagging
  • Scikit's GradientBoosting
  • Scikit's HistGradientBoosting
  • DMLC's XGBoost
  • Catboost's Catboost
  • Microsoft's LightGBM

Grid Search

from Amplo.GridSearch import *

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Amplo-0.3.9.tar.gz (63.4 kB view details)

Uploaded Source

Built Distribution

Amplo-0.3.9-py3-none-any.whl (85.5 kB view details)

Uploaded Python 3

File details

Details for the file Amplo-0.3.9.tar.gz.

File metadata

  • Download URL: Amplo-0.3.9.tar.gz
  • Upload date:
  • Size: 63.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for Amplo-0.3.9.tar.gz
Algorithm Hash digest
SHA256 a4f70aed1b50ee9021b13bbfbf1ac96acf9e33512497cd95eda1b5c6c7c0a7f3
MD5 8cc3655db39cd1a28b0d3f346625381f
BLAKE2b-256 3b4761973a74ed2d73781ba79ab817d61ea389451e7696e962e92472199d4c28

See more details on using hashes here.

File details

Details for the file Amplo-0.3.9-py3-none-any.whl.

File metadata

  • Download URL: Amplo-0.3.9-py3-none-any.whl
  • Upload date:
  • Size: 85.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for Amplo-0.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 85b33b42ab027c2a007d76bbf359ed722bbc3f4349b61b3fa783b8e4e783abd8
MD5 b96e9d32c18b5972b2f594ad79d10ee7
BLAKE2b-256 1b11c166c5e841ba091b46116fa21897a4fbc291bfe38fd35e0a12874709b3fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page