Skip to main content

Tools for getting analysis of all classifiers and regressors

Project description

Package Installation

    pip install AutoClassifierRegressor

Package Import

    from AutoClassifierRegressor import regression_report_generation

    from AutoClassifierRegressor import classification_report_generation

For Regression call this function with following parameters

regression_report_generation(dataframe, "target name", path="desired folder name", saveModel=True, normalisation=True, preprocessing=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for regression (required)
    3. path = name of folder (optional)
    4. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
    5. normalisation = if set as True data will be normalised (optional)
    6. preprocessing = if set as True then data will be preprocessed, which includes fillna and label encoding for categorical variables

Example:

    df=pd.read_csv("/content/sample_data/california_housing_train.csv")
    regression_report_generation(df, "median_house_value", path="Housing_data", saveModel=True, normalisation=True)

For Classification call this function with following parameters

classification_report_generation(dataframe, "target label", n= no classes, path="desired folder name", saveModel=True, preprocessing=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for classification (required)
    3. n=2 for binary classification (required) and n=no of classes for multiclass classification (required)
    4. path = name of folder (optional)
    5. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
    6. preprocessing = if set as True then data will be preprocessed, which includes fillna and label encoding for categorical variables

Example:

    df=pd.read_csv("data.csv")
    classification_report_generation(df, "diagnosis", n=2, path="binary_classification_reports", saveModel=True)

    df = pd.read_csv('Iris.csv')
    classification_report_generation(df, "Species", n=3, path="classification_model_Multiclass", saveModel=True)

Output:

    1. Output will be in the form of html file with tabular analyis of all important classifiers or regressors along with poular evaluation metrics.
    2. Html file will be saved in current or in given path.
    3. All ML models will be saved in /Models folder in current or in given path.

Prerequisites:

1. Do necessary data processing for better results
2. Install all dependancies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoClassifierRegressor-0.0.6.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

AutoClassifierRegressor-0.0.6-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file AutoClassifierRegressor-0.0.6.tar.gz.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.6.tar.gz
Algorithm Hash digest
SHA256 b237820acc6b554b0cfe18042cf098913f69f49ee035400f4788a2fd4978d3ac
MD5 57785f261f75a621b5fc6f457fd2706a
BLAKE2b-256 e36b26bffb6f263934214a8c48e2306df9056b7a43b567f0a160dd331e2a23d7

See more details on using hashes here.

File details

Details for the file AutoClassifierRegressor-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 1e8a1acbda5065883f4c7019577bc60f18d9fc1578d8cf054a4f77fec9acd3ac
MD5 0a49b0afcfac99a14fa8d04db76c7c57
BLAKE2b-256 1055b734e12e9e5f979cdb1be5b42f8c5c9bce97bc45719430bc544410ea43dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page