Skip to main content

A component based framework for designing automated code modification

Project description

Overview

Full documentation available here

Installing

⚠ WARNING: AutoTransform requires Python 3.10

  • Latest Release pip install AutoTransform
  • Bleeding Edge pip install git+git://github.com/nathro/AutoTransform.git
    • Windows users may need to replace git:// with https://
    • If you do not have git use: pip install https://github.com/nathro/AutoTransform/archive/master.zip

After installing via pip, AutoTransform can be initialized using autotransform init. If called within a git repo, this script will also initialize the repo to use AutoTransform. For a simple setup experience, run autotransform init --simple --github or autotransform init --simple --no-github

Summary

AutoTransform is an opensource framework for large-scale code modification. It enables a schema-based system of defining codemods that can then be run using AutoTransform, with options for automatic scheduling as well as change management. AutoTransform leverages a component-based model that allows adopters to quickly and easily get whatever behavior they need through the creation of new, custom components. Additionally, custom components can readily be added to the component library of AutoTransform to be shared more widely with others using the framework.

Goal

The goal of AutoTransform is to make codebase maintenance simple, easy, and automatic. By providing a clear structure for definition, all types of modifications can be automated. Some examples include:

  • Library upgrades
  • API changes
  • Performance improvements
  • Lint or style fixes
  • Dead code
  • One-off refactors
  • Any other programmatically definable modification

Philosophies

Component Based

AutoTransform heavily uses a component based model for functionality. This allows easy customization through the creation of new plug-and-play components. Core logic is about funneling information between components, while the components themselves contain business logic. While AutoTransform provides an ever-growing library of components for ease of adoption, bespoke components will always be needed for some use cases.

Language Agnostic

AutoTransform, though written in Python, is a language agnostic framework. Our component model allows AutoTransform to treat each component as a black-box that can leverage whatever tooling or language makes sense for the goal of the component. This is most heavily needed for the components which actually make code changes where leveraging tools for Abstract(or Concrete) Syntax Trees(AST/CST) is often done in the language being modified.

Minimal Developer Involvement

Managing large scale changes can be extremely time consuming, AutoTransform puts automation first with the goal of automating as much of the process as possible. Developer time is incredibly valuable and should be saved for things that actually require it. If a computer can do it, a computer should do it.

Example - Typing

As an example of how AutoTransform might be used, let’s go through the case of typing a legacy codebase. This is a notoriously difficult and time consuming process.

Static Inference

A codemod can be written that statically infers types from the types around whatever needs types. Hooking this up to scheduled runs would mean that as people type your code, other types can later be inferred. Additionally, as the codemod types code, that can reveal further types that can be statically inferred. This would allow typing to slowly build up over time automatically as the codemod runs and developers introduce more types themselves, significantly speeding up the process of typing a legacy codebase.

Run Time Logging

In addition to static typing, a codemod could instrument untyped functions or other code to log types at run time. These logs could then be fed into the codemod to add types to code that can’t be inferred but can be determined at run time. This codemod could additionally be written to only instrument a small part of the codebase at a given time, preventing excessive resource utilization.

The Whole Versus the Sum of the Parts

Each codemod that can change code can benefit from all other codemods. As run time logging adds types, static inference can make better changes. Dead code removal can clean up untyped code. The layered passes, and building on top of the changes of each codemod, can produce significantly greater wins.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoTransform-0.3.1.tar.gz (74.2 kB view details)

Uploaded Source

Built Distribution

AutoTransform-0.3.1-py3-none-any.whl (134.5 kB view details)

Uploaded Python 3

File details

Details for the file AutoTransform-0.3.1.tar.gz.

File metadata

  • Download URL: AutoTransform-0.3.1.tar.gz
  • Upload date:
  • Size: 74.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for AutoTransform-0.3.1.tar.gz
Algorithm Hash digest
SHA256 ecb05a25e55b985dec5e174137470a709134fade7e82c54f6b9baa38086d79b4
MD5 32043be5a3b542b03ca5de24351f61b9
BLAKE2b-256 5d975eaffea0889d67ae031624f85780972b83fa4ed498665103502013fa2121

See more details on using hashes here.

File details

Details for the file AutoTransform-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoTransform-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0328e3fa2b2a2c35591d24740abd23df9459356e013116c171c2bdbf2c543469
MD5 9bd41a526e779927149b2b8407d80d2b
BLAKE2b-256 bef1f9f8a73c6748cbfcb1e94cec6ca44e629ef46ee13e3bdcb08e2083cf5089

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page