Biosynthetic Gene Cluster finder with Graph Neural Network
Project description
BGCfinder : Biosynthetic Gene Cluster detection with Graph Neural Network
BGCfinder detects biosynthetic gene clusters in bacterial genomes using deep learning. BGCfinder takes a fasta file containing protein sequences and convert each of them into a graph. Graph neural network takes the input graphs to detect biosynthetic gene cluster..
- Developer : Jihun Jeung (jihun@gm.gist.ac.kr, jeung4705@gmail.com)
- Github repository : https://github.com/jihunni/BGCfinder
- PyPI project website : https://pypi.org/project/BGCfinder/
Installation requirement:
- PyTorch
- PyTorch Geometric
- Prodigal (https://github.com/hyattpd/Prodigal)
To construct the conda environment,
$ conda create --name BGCfinder python=3.9
$ conda init bash
$ conda activate BGCfinder
$ conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
$ conda install pyg -c pyg
$ pip install BGCfinder
To download the BGCfinder model and test files,
$ bgc-download
To find the protein-coding gene in bacterial genome (Installation of Prodigal
is required for this step),
$ prodigal -f gff -i bacterial_genome_seq.fasta -a bacterial_protein_seq.fasta -o bacterial_genome_seq.gff
To run BGCfinder with a fasta file containing amino acid sequence with CPU (recommended),
$ bgcfinder bacterial_protein_seq.fasta -o output_filename_prefix -l log_record.log -d False
To run BGCfinder with a fasta file containing amino acid sequence with GPU,
$ bgcfinder bacterial_protein_seq.fasta -o output_filename_prefix -l log_record.log -d True
The development environment of BGCfinder :
'torch==1.10.0',
'torch-geometric==2.0.2',
'torch-scatter==2.0.9',
'torch-sparse==0.6.12'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file BGCfinder-0.0.30-py3-none-any.whl
.
File metadata
- Download URL: BGCfinder-0.0.30-py3-none-any.whl
- Upload date:
- Size: 10.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba2c5bb8e3d5f37f8755d8eec4e6c057d0263da421d3cbed75a4bc40c477c18a |
|
MD5 | fdcad80af7448a6be0699dd0cfad00ab |
|
BLAKE2b-256 | f99f01b8bfd0e1fd1790103f6749244b902fca7ba6b4ea414bc2b2bb1413a0cd |