Skip to main content

Perform baseline removal, baseline correction and baseline substraction for raman spectra using Modpoly, ImodPoly and Zhang fit. Returns baseline-subtracted spectrum

Project description

What is it?

Companion python library for the machine learning book Feature Engineering & Selection for Explainable Models A Second Course for Data Scientists. It is used for baseline correction. It has below 3 methods for baseline removal from spectra.

  • Modpoly Modified multi-polynomial fit [1]. It has below 3 parameters.
  1. degree, it refers to polynomial degree, and default value is 2.

  2. repitition, it refers to how many iterations to run, and default value is 100.

  3. gradient, it refers to gradient for polynomial loss, default is 0.001. It measures incremental gain over each iteration. If gain in any iteration is less than this, further improvement will stop.

  • IModPoly Improved ModPoly[2], which addresses noise issue in ModPoly. It has below 3 parameters.
  1. degree, it refers to polynomial degree, and default value is 2.

  2. repitition, it refers to how many iterations to run, and default value is 100.

  3. gradient, it refers to gradient for polynomial loss, and default is 0.001. It measures incremental gain over each iteration. If gain in any iteration is less than this, further improvement will stop.

  • ZhangFit Zhang fit[3], which doesn’t require any user intervention and prior information, such as detected peaks. It has below 3 parameters.
  1. lambda_, it can be adjusted by user. The larger lambda is, the smoother the resulting background. Default value is 100.

  2. porder refers to adaptive iteratively reweighted penalized least squares for baseline fitting. Default value is 1.

  3. repitition is how many iterations to run, and default value is 15.

We can use the python library to process spectral data through either of the techniques ModPoly, IModPoly or Zhang fit algorithm for baseline subtraction. The functions will return baseline-subtracted spectrum.

How to use it?

from BaselineRemoval import BaselineRemoval

input_array=[10,20,1.5,5,2,9,99,25,47]

polynomial_degree=2 #only needed for Modpoly and IModPoly algorithm

baseObj=BaselineRemoval(input_array)

Modpoly_output=baseObj.ModPoly(polynomial_degree)

Imodpoly_output=baseObj.IModPoly(polynomial_degree)

Zhangfit_output=baseObj.ZhangFit()

print('Original input:',input_array)

print('Modpoly base corrected values:',Modpoly_output)

print('IModPoly base corrected values:',Imodpoly_output)

print('ZhangFit base corrected values:',Zhangfit_output)

Original input: [10, 20, 1.5, 5, 2, 9, 99, 25, 47]

Modpoly base corrected values: [-1.98455800e-04  1.61793368e+01  1.08455179e+00  5.21544654e+00
  7.20210508e-02  2.15427531e+00  8.44622093e+01 -4.17691125e-03
  8.75511661e+00]

IModPoly base corrected values: [-0.84912125 15.13786196 -0.11351367  3.89675187 -1.33134142  0.70220645
 82.99739548 -1.44577432  7.37269705]

ZhangFit base corrected values: [ 8.49924691e+00  1.84994576e+01 -3.31739230e-04  3.49854060e+00
  4.97412948e-01  7.49628529e+00  9.74951576e+01  2.34940300e+01
  4.54929023e+01

Where to get it?

pip install BaselineRemoval

How to cite?

Md Azimul Haque (2022). Feature Engineering & Selection for Explainable Models A Second Course for Data Scientists

Dependencies

References

  1. Automated Method for Subtraction of Fluorescence from Biological Raman Spectra by Lieber & Mahadevan-Jansen (2003)
  2. Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy by Zhao, Jianhua, Lui, Harvey, McLean, David I., Zeng, Haishan (2007)
  3. Baseline correction using adaptive iteratively reweighted penalized least squares by Zhi-Min Zhang, Shan Chena and Yi-Zeng Liang (2010)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BaselineRemoval-0.1.3.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

BaselineRemoval-0.1.3-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file BaselineRemoval-0.1.3.tar.gz.

File metadata

  • Download URL: BaselineRemoval-0.1.3.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/58.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for BaselineRemoval-0.1.3.tar.gz
Algorithm Hash digest
SHA256 5daba57dc5583dc305454c4e44db07c111d529a59ccc0f83cf2624d36b61cefb
MD5 0813ea369aa86f975974a4a77b3f92be
BLAKE2b-256 a78bcd683d0d5ecf34694a2e289c56173840af124ce9cd21020c90c2bf3c4f94

See more details on using hashes here.

File details

Details for the file BaselineRemoval-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: BaselineRemoval-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 6.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/58.3.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for BaselineRemoval-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7f54048e8561dbabea17cafaae16288e1dfab800d0c2cbdc60ea11dd70d86006
MD5 e2ea0d3e1c50359307911cb1049056d5
BLAKE2b-256 0f6d17338f3991d5fa6caa9f62703d42ce5b4a08c66ce01694f07afd11368e9a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page