Skip to main content

Bayesian inference of algorithm performance using permutation models.

Project description

#BayesPermus

Bayesian inference of algorithm performance using permutation models.

Installation

	pip install BayesPermus

Usage

  1. Prepare permutation data:
permus = np.array([[1,2,3], [1,3,2]])
  1. Obtain the marginal probabilities:
from BayesPermus.models.BradleyTerry import BradleyTerry

# BT Dirichlet hyper-priors
 dirichlet_alpha_bt = num_algorithms * [1]


bradleyTerry = BradleyTerry(dirichlet_alpha_bt, num_samples=1000)

# Calculate the marginal probabilities
probs = bradleyTerry.calculate_top_ranking_probs(permus)

Additional available marginals

  • Probability of an algorithm to be in the first position: model.calculate_top_ranking_probs(...).
  • Probability of an algorithm to outperform another: model.calculate_better_than_probs(...).
  • Probability of an algorithm to be in the top-k ranking: model.calculate_top_k_probs(...).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BayesPermus-0.0.1.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

BayesPermus-0.0.1-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file BayesPermus-0.0.1.tar.gz.

File metadata

  • Download URL: BayesPermus-0.0.1.tar.gz
  • Upload date:
  • Size: 6.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for BayesPermus-0.0.1.tar.gz
Algorithm Hash digest
SHA256 28801460d9301589422c389a847bc6b9a09f4f27adce917354290bfc90412947
MD5 10db3f416e2e30ff307d19dce24e6779
BLAKE2b-256 ca1db77c3135a9b9644f0c3630703b61f3e77ed4099d2720023e7155f235ac54

See more details on using hashes here.

File details

Details for the file BayesPermus-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: BayesPermus-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for BayesPermus-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c63f835f32c34b525e2e67ec3a4b51fd31036f67b4219bd45a3c8a45b90ad809
MD5 a3b2395fb1a2e585795eae5369472afd
BLAKE2b-256 34f6af90c405f300b73f477c75596fb6871b9dbffdee38458eae9a87548d6f2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page