Bayesian inference of algorithm performance using permutation models.
Project description
#BayesPermus
Bayesian inference of algorithm performance using permutation models.
Installation
pip install BayesPermus
Usage
- Prepare permutation data:
permus = np.array([[1,2,3], [1,3,2]])
- Obtain the marginal probabilities:
from BayesPermus.models.BradleyTerry import BradleyTerry
# BT Dirichlet hyper-priors
dirichlet_alpha_bt = num_algorithms * [1]
bradleyTerry = BradleyTerry(dirichlet_alpha_bt, num_samples=1000)
# Calculate the marginal probabilities
probs = bradleyTerry.calculate_top_ranking_probs(permus)
Additional available marginals
- Probability of an algorithm to be in the first position:
model.calculate_top_ranking_probs(...)
. - Probability of an algorithm to outperform another:
model.calculate_better_than_probs(...)
. - Probability of an algorithm to be in the top-k ranking:
model.calculate_top_k_probs(...)
.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
BayesPermus-0.0.1.tar.gz
(6.6 kB
view details)
Built Distribution
File details
Details for the file BayesPermus-0.0.1.tar.gz
.
File metadata
- Download URL: BayesPermus-0.0.1.tar.gz
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 28801460d9301589422c389a847bc6b9a09f4f27adce917354290bfc90412947 |
|
MD5 | 10db3f416e2e30ff307d19dce24e6779 |
|
BLAKE2b-256 | ca1db77c3135a9b9644f0c3630703b61f3e77ed4099d2720023e7155f235ac54 |
File details
Details for the file BayesPermus-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: BayesPermus-0.0.1-py3-none-any.whl
- Upload date:
- Size: 8.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c63f835f32c34b525e2e67ec3a4b51fd31036f67b4219bd45a3c8a45b90ad809 |
|
MD5 | a3b2395fb1a2e585795eae5369472afd |
|
BLAKE2b-256 | 34f6af90c405f300b73f477c75596fb6871b9dbffdee38458eae9a87548d6f2e |