Skip to main content

A bayesian approach to brand health tracking

Project description

BayesianBrandTracker

This file will become your README and also the index of your documentation.

Developer Guide

If you are new to using nbdev here are some useful pointers to get you started.

Install BayesianBrandTracker in Development mode

# make sure BayesianBrandTracker package is installed in development mode
$ pip install -e .

# make changes under nbs/ directory
# ...

# compile to have changes apply to BayesianBrandTracker
$ nbdev_prepare

Usage

Installation

Install latest from the GitHub repository:

$ pip install git+https://github.com/redam94/BayesianBrandTracker.git

or from conda

$ conda install -c redam94 BayesianBrandTracker

or from pypi

$ pip install BayesianBrandTracker

Documentation

Documentation can be found hosted on this GitHub repository’s pages. Additionally you can find package manager specific guidelines on conda and pypi respectively.

How to use

Fill me in please! Don’t forget code examples:

1+1
2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bayesianbrandtracker-0.0.1.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

BayesianBrandTracker-0.0.1-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file bayesianbrandtracker-0.0.1.tar.gz.

File metadata

  • Download URL: bayesianbrandtracker-0.0.1.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for bayesianbrandtracker-0.0.1.tar.gz
Algorithm Hash digest
SHA256 1c7b9817285809193930fb9f6e4b8bc12bd0b3b1151ad510f4c7636cbc05dbb0
MD5 f50d073e52f6483f4fdb175208cfa0e6
BLAKE2b-256 f4320de5a0cb8434223affe706c44d4c6bd884abbb86770585d59250fe05801e

See more details on using hashes here.

File details

Details for the file BayesianBrandTracker-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for BayesianBrandTracker-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4d11093bb260ef0900af61f4fe00b924e21e5d34cf96f5b5b21825b367e9552e
MD5 c9c52d7799c2a337bc8a2c2a4f909331
BLAKE2b-256 7f024164ebeae9f56d78ffa8d1824b3718dc96cad4d416e2b9ea874c85df8ddb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page