Skip to main content

A Bayesian global optimization package for material design

Project description

[![](https://img.shields.io/badge/PyPI-caobin-blue)](https://pypi.org/project/Bgolearn/) # Python package - Bgolearn

![Screen Shot 2022-07-11 at 9 13 28 AM](https://user-images.githubusercontent.com/86995074/178176016-8a79db81-fcfb-4af0-9b1c-aa4e6a113b5e.png)

## 为材料设计而生! ## ( A Bayesian global optimization package for material design )Version 1, Jul, 2022

Reference paper : V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Optimization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.

Written using Python, which is suitable for operating systems, e.g., Windows/Linux/MAC OS etc.

## Content Bgolearn guides subsequent material design based on existed experimental data. Which includes: 1.Expected Improvement algorithm, 2.Expected improvement with “plugin”,3.Augmented Expected Improvement,4.Expected Quantile Improvement,5.Reinterpolation Expected Improvement, 6.Upper confidence bound,7.Probability of Improvement,8.Predictive Entropy Search,9.Knowledge Gradient, a total of nine Utility Functions. Predictive Entropy Search,Knowledge Gradient are implemented based on Monte Carlo simulation.(贝叶斯优化设计,根据已有的实验数据对后续材料设计作出指导,本算法包共包括:期望最大化算法,期望最大化算法改进(考虑数据噪声),上确界方法,期望提升方法,熵搜索,知识梯度方法等在内的共计9种贝叶斯采样方法。其中熵搜索和知识梯度方法基于蒙特卡洛实现)

## Installing / 安装 pip install Bgolearn

## Updating / 更新 pip install –upgrade Bgolearn

## Running / 运行 ### Ref.https://github.com/Bin-Cao/Bgolearn/blob/main/Template/demo.ipynb

## Utility Function 效用函数: + 1:Expected Improvement + 2:Expected improvement with “plugin” + 3:Augmented Expected Improvement + 4:Expected Quantile Improvement + 5:Reinterpolation Expected Improvement + 6:Upper confidence bound + 7:Probability of Improvement + 8:Predictive Entropy Search + 9:Knowledge Gradient

## About / 更多 Maintained by Bin Cao. Please feel free to open issues in the Github or contact Bin Cao (bcao@shu.edu.cn) in case of any problems/comments/suggestions in using the code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bgolearn-1.1.2.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

Bgolearn-1.1.2-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file Bgolearn-1.1.2.tar.gz.

File metadata

  • Download URL: Bgolearn-1.1.2.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for Bgolearn-1.1.2.tar.gz
Algorithm Hash digest
SHA256 8debe5ebd4a1468c744d121adb9d5ad0d7aada35e3532c79859d03a77b06c09f
MD5 20f2bb8fa7664221141129c72c21af96
BLAKE2b-256 0fb009b665f69dd5df3a901fe2230a2f392bcc6624a5dd44f543882a9f7a0fd2

See more details on using hashes here.

File details

Details for the file Bgolearn-1.1.2-py3-none-any.whl.

File metadata

  • Download URL: Bgolearn-1.1.2-py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for Bgolearn-1.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ee3c7c7020335b03bfb0d34067497a01b4ad3d14d984c7093c4e70f050c05a5e
MD5 e37d25a10c8606d7a902bf5848ca498c
BLAKE2b-256 a517ff19e4661bc83fde1d56853964fb3f8a67e92c351480f8a92b356fe716c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page