Skip to main content

A Bayesian global optimization package for material design

Project description

[![](https://img.shields.io/badge/PyPI-caobin-blue)](https://pypi.org/project/Bgolearn/) # Python package - Bgolearn

![Screen Shot 2022-07-11 at 9 13 28 AM](https://user-images.githubusercontent.com/86995074/178176016-8a79db81-fcfb-4af0-9b1c-aa4e6a113b5e.png)

## 为材料设计而生! ## ( A Bayesian global optimization package for material design )Version 1, Jul, 2022

Reference paper : V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Optimization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.

Written using Python, which is suitable for operating systems, e.g., Windows/Linux/MAC OS etc.

## Content Bgolearn guides subsequent material design based on existed experimental data. Which includes: 1.Expected Improvement algorithm, 2.Expected improvement with “plugin”,3.Augmented Expected Improvement,4.Expected Quantile Improvement,5.Reinterpolation Expected Improvement, 6.Upper confidence bound,7.Probability of Improvement,8.Predictive Entropy Search,9.Knowledge Gradient, a total of nine Utility Functions. Predictive Entropy Search,Knowledge Gradient are implemented based on Monte Carlo simulation.(贝叶斯优化设计,根据已有的实验数据对后续材料设计作出指导,本算法包共包括:期望最大化算法,期望最大化算法改进(考虑数据噪声),上确界方法,期望提升方法,熵搜索,知识梯度方法等在内的共计9种贝叶斯采样方法。其中熵搜索和知识梯度方法基于蒙特卡洛实现)

## Installing / 安装 pip install Bgolearn

## Updating / 更新 pip install –upgrade Bgolearn

## Running / 运行 ### Ref.https://github.com/Bin-Cao/Bgolearn/blob/main/Template/demo.ipynb

## Utility Function 效用函数: + 1:Expected Improvement + 2:Expected improvement with “plugin” + 3:Augmented Expected Improvement + 4:Expected Quantile Improvement + 5:Reinterpolation Expected Improvement + 6:Upper confidence bound + 7:Probability of Improvement + 8:Predictive Entropy Search + 9:Knowledge Gradient

## About / 更多 Maintained by Bin Cao. Please feel free to open issues in the Github or contact Bin Cao (bcao@shu.edu.cn) in case of any problems/comments/suggestions in using the code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bgolearn-1.1.4.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

Bgolearn-1.1.4-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file Bgolearn-1.1.4.tar.gz.

File metadata

  • Download URL: Bgolearn-1.1.4.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for Bgolearn-1.1.4.tar.gz
Algorithm Hash digest
SHA256 1643f1baccf66411686026154cc8b1a4edd30a50b672c9de5b9c1530da1172f7
MD5 f568bafd8d503fd5a4e2144f94e379e9
BLAKE2b-256 294ebddb2b650642b28222bc4c4c7b44d91a6e4f73aa336a412dbfddbce68d14

See more details on using hashes here.

File details

Details for the file Bgolearn-1.1.4-py3-none-any.whl.

File metadata

  • Download URL: Bgolearn-1.1.4-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for Bgolearn-1.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 e28da35a54de364ecc5d32ad334acf1c709aa0e630409d784d6da8446b625566
MD5 38b4a8d07958fa0c668248ec8297428b
BLAKE2b-256 4b366bc313f879e6d40529ba7a9ba67896652404f2e6cb41791693c8d8bdcb7f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page