A Bayesian global optimization package for material design
Project description
[![](https://img.shields.io/badge/PyPI-caobin-blue)](https://pypi.org/project/Bgolearn/) # Python package - Bgolearn
![Screen Shot 2022-07-11 at 9 13 28 AM](https://user-images.githubusercontent.com/86995074/178176016-8a79db81-fcfb-4af0-9b1c-aa4e6a113b5e.png)
## 为材料设计而生! ## ( A Bayesian global optimization package for material design )Version 1, Jul, 2022
Reference paper : V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Optimization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.
Written using Python, which is suitable for operating systems, e.g., Windows/Linux/MAC OS etc.
## Content Bgolearn guides subsequent material design based on existed experimental data. Which includes: 1.Expected Improvement algorithm, 2.Expected improvement with “plugin”,3.Augmented Expected Improvement,4.Expected Quantile Improvement,5.Reinterpolation Expected Improvement, 6.Upper confidence bound,7.Probability of Improvement,8.Predictive Entropy Search,9.Knowledge Gradient, a total of nine Utility Functions. Predictive Entropy Search,Knowledge Gradient are implemented based on Monte Carlo simulation.(贝叶斯优化设计,根据已有的实验数据对后续材料设计作出指导,本算法包共包括:期望最大化算法,期望最大化算法改进(考虑数据噪声),上确界方法,期望提升方法,熵搜索,知识梯度方法等在内的共计9种贝叶斯采样方法。其中熵搜索和知识梯度方法基于蒙特卡洛实现)
## Installing / 安装 pip install Bgolearn
## Updating / 更新 pip install –upgrade Bgolearn
## Running / 运行 ### Ref.https://github.com/Bin-Cao/Bgolearn/blob/main/Template/demo.ipynb
## Utility Function 效用函数: + 1:Expected Improvement + 2:Expected improvement with “plugin” + 3:Augmented Expected Improvement + 4:Expected Quantile Improvement + 5:Reinterpolation Expected Improvement + 6:Upper confidence bound + 7:Probability of Improvement + 8:Predictive Entropy Search + 9:Knowledge Gradient
## About / 更多 Maintained by Bin Cao. Please feel free to open issues in the Github or contact Bin Cao (bcao@shu.edu.cn) in case of any problems/comments/suggestions in using the code.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file Bgolearn-1.1.4.tar.gz
.
File metadata
- Download URL: Bgolearn-1.1.4.tar.gz
- Upload date:
- Size: 7.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1643f1baccf66411686026154cc8b1a4edd30a50b672c9de5b9c1530da1172f7 |
|
MD5 | f568bafd8d503fd5a4e2144f94e379e9 |
|
BLAKE2b-256 | 294ebddb2b650642b28222bc4c4c7b44d91a6e4f73aa336a412dbfddbce68d14 |
File details
Details for the file Bgolearn-1.1.4-py3-none-any.whl
.
File metadata
- Download URL: Bgolearn-1.1.4-py3-none-any.whl
- Upload date:
- Size: 10.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e28da35a54de364ecc5d32ad334acf1c709aa0e630409d784d6da8446b625566 |
|
MD5 | 38b4a8d07958fa0c668248ec8297428b |
|
BLAKE2b-256 | 4b366bc313f879e6d40529ba7a9ba67896652404f2e6cb41791693c8d8bdcb7f |