Skip to main content

A Bayesian global optimization package for material design

Project description

[![](https://img.shields.io/badge/PyPI-caobin-blue)](https://pypi.org/project/Bgolearn/) # Python package - Bgolearn

![Screen Shot 2022-07-11 at 9 13 28 AM](https://user-images.githubusercontent.com/86995074/178176016-8a79db81-fcfb-4af0-9b1c-aa4e6a113b5e.png)

## 为材料设计而生! ## ( A Bayesian global optimization package for material design )Version 1, Jul, 2022

Reference paper : V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Optimization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.

Written using Python, which is suitable for operating systems, e.g., Windows/Linux/MAC OS etc.

## Content Bgolearn guides subsequent material design based on existed experimental data. Which includes: 1.Expected Improvement algorithm, 2.Expected improvement with “plugin”,3.Augmented Expected Improvement,4.Expected Quantile Improvement,5.Reinterpolation Expected Improvement, 6.Upper confidence bound,7.Probability of Improvement,8.Predictive Entropy Search,9.Knowledge Gradient, a total of nine Utility Functions. Predictive Entropy Search,Knowledge Gradient are implemented based on Monte Carlo simulation.(贝叶斯优化设计,根据已有的实验数据对后续材料设计作出指导,本算法包共包括:期望最大化算法,期望最大化算法改进(考虑数据噪声),上确界方法,期望提升方法,熵搜索,知识梯度方法等在内的共计9种贝叶斯采样方法。其中熵搜索和知识梯度方法基于蒙特卡洛实现)

## Installing / 安装 pip install Bgolearn

## Updating / 更新 pip install –upgrade Bgolearn

## About / 更多 Maintained by Bin Cao. Please feel free to open issues in the Github or contact Bin Cao (bcao@shu.edu.cn) in case of any problems/comments/suggestions in using the code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bgolearn-1.4.0.tar.gz (13.6 kB view details)

Uploaded Source

Built Distribution

Bgolearn-1.4.0-py3-none-any.whl (17.2 kB view details)

Uploaded Python 3

File details

Details for the file Bgolearn-1.4.0.tar.gz.

File metadata

  • Download URL: Bgolearn-1.4.0.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for Bgolearn-1.4.0.tar.gz
Algorithm Hash digest
SHA256 3706a27d93312f2cba746e278743d58ce55e4df28842019c75e171cca92e3a02
MD5 fe0c98ea32a7b76f1641b9fb09c89ef1
BLAKE2b-256 d8accf298c7c8a9940bdf4e3e5abd804697c09b1b9771f7528de5daa14f8a79c

See more details on using hashes here.

File details

Details for the file Bgolearn-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: Bgolearn-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 17.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for Bgolearn-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0b6d0177820520ae5d72ccedc5dc91fdbbe3c365c67aa82f692de044483a6c0f
MD5 4cffcf660c62a50479ed6170931504b6
BLAKE2b-256 7ff3e3580ce3bac63e4f244f6410b81218ef96945848511dca016981999a1e67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page