Skip to main content

A Bayesian global optimization package for material design

Project description

[![](https://img.shields.io/badge/PyPI-caobin-blue)](https://pypi.org/project/Bgolearn/) # Python package - Bgolearn

![Screen Shot 2022-07-11 at 9 13 28 AM](https://user-images.githubusercontent.com/86995074/178176016-8a79db81-fcfb-4af0-9b1c-aa4e6a113b5e.png)

## 为材料设计而生! ## ( A Bayesian global optimization package for material design )Version 1, Jul, 2022

Reference paper : V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Optimization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.

Written using Python, which is suitable for operating systems, e.g., Windows/Linux/MAC OS etc.

## Content Bgolearn guides subsequent material design based on existed experimental data. Which includes: 1.Expected Improvement algorithm, 2.Expected improvement with “plugin”,3.Augmented Expected Improvement,4.Expected Quantile Improvement,5.Reinterpolation Expected Improvement, 6.Upper confidence bound,7.Probability of Improvement,8.Predictive Entropy Search,9.Knowledge Gradient, a total of nine Utility Functions. Predictive Entropy Search,Knowledge Gradient are implemented based on Monte Carlo simulation.(贝叶斯优化设计,根据已有的实验数据对后续材料设计作出指导,本算法包共包括:期望最大化算法,期望最大化算法改进(考虑数据噪声),上确界方法,期望提升方法,熵搜索,知识梯度方法等在内的共计9种贝叶斯采样方法。其中熵搜索和知识梯度方法基于蒙特卡洛实现)

## Installing / 安装 pip install Bgolearn

## Updating / 更新 pip install –upgrade Bgolearn

## About / 更多 Maintained by Bin Cao. Please feel free to open issues in the Github or contact Bin Cao (bcao@shu.edu.cn) in case of any problems/comments/suggestions in using the code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bgolearn-1.5.1.tar.gz (13.6 kB view details)

Uploaded Source

Built Distribution

Bgolearn-1.5.1-py3-none-any.whl (17.2 kB view details)

Uploaded Python 3

File details

Details for the file Bgolearn-1.5.1.tar.gz.

File metadata

  • Download URL: Bgolearn-1.5.1.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for Bgolearn-1.5.1.tar.gz
Algorithm Hash digest
SHA256 0f020e45fa5146f728f49c2c3addf51b83db629bbc90d6b6b8d8762bfaefcf4b
MD5 a17afb66668c2280e899e52bfa589b87
BLAKE2b-256 f4c2d4a6ec60ca472baaf4c85b13fa954638fba729ea8605aeef0406dea94058

See more details on using hashes here.

File details

Details for the file Bgolearn-1.5.1-py3-none-any.whl.

File metadata

  • Download URL: Bgolearn-1.5.1-py3-none-any.whl
  • Upload date:
  • Size: 17.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for Bgolearn-1.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 88af639ac780b50260df7f37555c8f9e4fbe348ed2059818cb4e3b61d01719ac
MD5 55cbdf3afd1cd89fd49291b19f6456b3
BLAKE2b-256 cfa2d733f13a9c360d8a1995bf4c3394b66c7c3840d0cb462b64f444a2c0bfbf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page